
Advances in Cognitive Systems 5 (2017) Submitted 3/2017; published 5/2017

© 2017 Cognitive Systems Foundation. All rights reserved.

Demonstration-based Solution Authoring for Skill Assessment

Melinda Gervasio MELINDA.GERVASIO@SRI.COM
Karen Myers KAREN.MYERS@SRI.COM
Michael Wessel MICHAEL.WESSEL@SRI.COM
Artificial Intelligence Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 USA

Abstract
The high cost of developing content has been a major impediment to the widespread deployment
of intelligent training systems. To enable automated skill assessment, traditional approaches have
required significant time investment by highly trained individuals to encode first-principles
domain models for the training task. In contrast, approaches grounded in example-based methods
have been shown to significantly reduce authoring time. This paper reports on an approach to
creating solution models for automated skill assessment using an example-based methodology,
specifically targeting domains for which solution models must support robustness to learner
mistakes. With this approach, a content author creates a baseline solution model by demonstrating
a solution instance and then specifies a set of annotations to generalize from that instance to a
comprehensive solution model. Results from a user study show that domain experts are
comfortable with the approach and capable of applying it to generate quality solution models.

1. Introduction
Intelligent tutoring/training systems (ITS) have shown great potential for enabling self-directed
learning adapted to individual skill levels and learning styles. However, a significant impediment
to the widespread use of ITS technologies is the substantial effort required to develop the content
that drives their operation. As noted by others, effective authoring frameworks are essential to
alleviate the high cost of content development for ITS applications (Brawner et al., 2012).

 This paper reports on work that addresses a key portion of the content authoring problem,
namely the creation of models for supporting assessment of learner performance. We focus on
training domains that have a procedural flavor in that students seek to master skills that involve
performing sequences of context-dependent actions to achieve desired effects. Proficiency in such
domains improves with practice, which can be enabled through automated assessment capabilities
grounded in ITS technologies.

 Example-tracing tutors have emerged as a promising technology for training procedural tasks
(Aleven et al., 2009). Example-tracing tutors identify differences between a student’s actions
(recorded in an instrumented environment) and a predefined solution trace for completing a task.
These differences can be used both to assess student performance and to provide targeted
feedback. Several training systems based on example tracing have been built, including our prior
work on a framework called Drill Evaluation for Training (DEFT).

M. GERVASIO, K. MYERS, AND M. WESSEL

2

 DEFT uses approximate graph-matching technology to align learner actions with predefined
solution models. This alignment provides the basis for generating assessment information with
contextually relevant feedback: identifying errors, providing hints to help the student complete a
task, and suggesting links to relevant training materials. Importantly, our flexible graph matching
capability provides tolerance to learner mistakes, avoiding the need for strict adherence to
specific solutions. Using this assessment technology, we created prototype training tools for two
significant application domains. One of these assists with training for the Command Post of the
Future (CPOF)—a collaborative geospatial visualization environment system used extensively by
the U.S. Army to develop situational awareness and to plan military operations (Myers et al.,
2013). The second application is to rifle maintenance, drawing on requirements from a U.S. Army
soldier training publication (Greuel et al., 2016).

 One of the appeals of example tracing is the potential for using solution demonstrations as
the basis for solution model acquisition. With a demonstration-based approach, content creation
no longer requires deep understanding of the knowledge representation and inference mechanisms
within the ITS. As such, assessment-related content can be created directly by domain experts
after a modest amount of training. Studies reported in (Koedinger et al., 2004) show an order-of-
magnitude reduction in development time for demonstration-based creation of solution models for
example-tracing tutors compared to direct authoring of first-principles models.

 In prior work, we conducted a paper study to inform the design of authoring frameworks for
solution models based on end-user programming techniques (Myers & Gervasio, 2016). The
study showed that domain experts (i.e., not ITS experts) are comfortable with the approach and
are capable of applying it to generate quality solution models for moderately complex tasks. It
also identified constructs that, while important for accurate solution characterization, can lead to
confusion and so warrant special care in tool design.

The work in this paper builds on that initial study. In particular, we describe the design of an
implemented authoring tool for solution models that was informed by the study. The tool supports
an authoring process in which a user first demonstrates a baseline solution and then generalizes
the demonstration to a comprehensive model by providing appropriate annotations that designate
allowed variations from the specifics of the demonstration. We then present results from a follow-
up study in a cooking domain that provides evidence for the practicality, effectiveness, and
viability of our solution authoring approach.

The paper is organized as follows. Section 2 presents background information on our
approach to assessment. Section 3 describes our demonstration-based approach to solution
authoring along with the specific tool that we developed to support this process. Section 4
presents the design of our user study and summarizes findings and implications. Section 5
summarizes related work and Section 6 presents concluding remarks.

2. Automated Assessment via Flexible Graph Matching

We represent solution models for a training exercise (i.e., a task to be achieved) in terms of one or
more generalized action traces, each consisting of a sequence of steps and annotations that
specify allowed variations. A step is a parameterized action, a family of actions (e.g., all the
different ways that a delete action can be performed), or a set of options, each composed of a

 DEMONSTRATION-BASED SOLUTION AUTHORING FOR SKILL ASSESSMENT

3

partially ordered set of steps. Annotations defined over steps include action ordering and
grouping constraints to support specification of, for example, a partial order between steps, some
of which may be specific actions and others of which may be any of a family or actions.
Annotations over parameters include type, value, membership, and equality constraints; these
support the specification of constraints such as a parameter taking on any of a specified set of
alternative values of a particular type or that the output of one action be the same as the input of
another. The action traces and accompanying annotations define a set of constraints on the space
of all possible solutions and thus a solution model implicitly defines a set of specific valid
solution instances for a particular exercise.

 Our automated assessment capability determines a mapping from the student’s response to
the exercise solution model. This alignment problem is formulated as approximate graph
matching, using graph edit distance to rate the quality of the mappings. Graph edit distance
measures the cumulative cost of graph editing operations needed to transform the student
response into an instance consistent with the exercise solution model.

To use this graph matching approach, the exercise solution model is encoded as one or more
graphs, each representing a family of possible solutions. Actions and their parameters are nodes
within these graphs, parameter roles are links, and required conditions within the solution (e.g.,
action orderings, parameter values) are constraints. The student response is represented similarly
as a response graph. Alignment involves finding the lowest-cost mapping between the response
and a solution graph, with costs incurred for missing mappings and violated constraints. The
intuition is that the lowest-cost alignment corresponds to the specific solution the student is most
likely attempting. From this alignment, an assessment is generated that identifies differences
between the response and the exercise solution model, which translate to specific errors the
student has made (e.g., out-of-order, missing, or extra actions; incorrect parameter values) and to
the corrections needed. The alignment algorithm is described in more detail in (Gervasio et al.,
2017).

The display of assessment
feedback in our original DEFT system
presented the full action trace to the
learner with overlaid markings that
identified learner mistakes. However,
users showed a preference for a
summary view of their mistakes: they
did not want to see everything they had
done, rather only what they had done
incorrectly (Myers et al., 2013). For
this reason, we transitioned from the
original trace-based presentation of
feedback to a summary-based
approach. Figure 1 shows sample
assessment feedback of this type for a
training exercise from our rifle
maintenance domain.

Figure 1. Sample assessment feedback

M. GERVASIO, K. MYERS, AND M. WESSEL

4

 Our approach to automated assessment is similar to that of other example-tracing tutors, e.g.,
(Aleven et al., 2009), which compare learner actions to a graph representing alternative solution
paths. In contrast to other example-tracing assessment capabilities, our graph-matching approach
does not force users down a limited set of solution paths. Rather, the flexible matching provides
tolerance to user mistakes, enabling assessment for domains in which more exploratory styles of
task completion are an important part of the learning experience.

3. Solution Authoring
In an online training application, a content author develops exercises for the learner, where the
exercises include solution models for automated assessment (Figure 2). As part of the framework
we developed for our prototype training applications (Greuel et al., 2016), we developed a tool
for authoring solution models. Our approach to authoring involves two steps: (1) demonstrating
one or more specific solutions to a training exercise, and (2) specifying annotations that
generalize the demonstrations to the full range of allowed solutions.

The author performs Step 1 within the same application students will use for training (e.g., a
virtual environment or a complex piece of software with instrumentation to capture interactions).
The output of Step 1 is a demonstration trace, which provides the input to Step 2. Step 2 is
performed within our authoring tool, the exercise solution editor (ESE). The ESE provides
annotation mechanisms that let the solution author generalize the specific sequence of steps in the
demonstration trace to a comprehensive solution model specification.

Figure 2. Solution model authoring for online training.

 DEMONSTRATION-BASED SOLUTION AUTHORING FOR SKILL ASSESSMENT

5

3.1 The Exercise Solution Editor (ESE)

The ESE is a direct-manipulation interface that provides both a visualization of the solution
model (i.e., a demonstration trace + annotations) and a variety of mechanisms for editing it. The
screenshot of the ESE in Figure 3 shows a solution model being developed for a cooking task. On
the left is the main pane, containing the annotated demonstration trace. It shows the sequence of
steps, consisting of single actions and groups of actions, as well as the parameters of each step.
The steps are decorated with various annotations, including arrows representing different types of
ordering constraints and buttons indicating step optionality and grouping. These annotations can
be made through drag-and-drop gestures on the demonstration trace or through the Annotations
pane on the right, which also serves as a legend for the semantics of the buttons on the steps (e.g.,
‘R’ and ‘O’ mean ‘Required’ and ‘Optional’ respectively).

As discussed previously, annotations on a solution model include annotations on individual
steps, sets of steps, and step parameters to support the specification of optionality constraints,
ordering and grouping constraints, and various parameter constraints. We now discuss each of
these in more detail.

Figure 3. Screenshot of the exercise solution editor showing a partially annotated demonstration trace.

M. GERVASIO, K. MYERS, AND M. WESSEL

6

3.1.1 Annotations on Single Steps

By default, the steps in a demonstration trace are ‘Required’, as signified by the ‘R’ on the upper
right of the step. Clicking on the ‘R’ toggles it into an ‘O’, indicating that the step is now
‘Optional’. Marking multiple steps as optional may be achieved more efficiently through the
controls provided by the Annotations pane. Clicking on the ‘R/O’ option here switches to a
specialized editing mode limited to toggling optionality of steps. During assessment, students are
only penalized for missing steps that are marked as ‘Required’. The ESE currently only supported
‘Required/Optional’ annotations on steps. Future annotations, based on user feedback, could
include ‘Preferred’ to indicate optional but desirable steps, and ‘Benign’ to explicitly indicate
extraneous but allowable actions.

3.1.2 Annotations over Multiple Steps

The ESE supports two types of multi-step annotations to specify sequencing constraints: ordering
and grouping. These annotations allow the solution author to relax the order of actions in the
demonstration trace, generalizing the solution model to a larger set of acceptable solutions. The
ESE uses arrows to visualize two types of ordering constraints: red arrows that depict fixed
ordering constraints (i.e., non-editable constraints imposed by the physical world and derived
from preconditions in the background action model for a domain) and blue arrows that depict
implied ordering constraints (initially, the ordering in which the actions were demonstrated). For
example, Figure 3 shows that putting dates into the toaster must be done before they can be
toasted. It also specifies that sugar should be added to the pan before the almond butter; however,
there is no physical reason that the order cannot be inverted and the author may choose to do so.

Steps can be reordered by dragging a step to the beginning or end of the sequence, or by
moving it to any position in between steps. However, a step cannot be dropped at a location
where a fixed (red) ordering constraints would be violated¾ESE will revert this drag-and-drop
operation after also informing the user of the violation with a pop-up message.

After a successful move operation, the implied (blue) ordering constraints are automatically
recomputed. To avoid visual clutter, a blue arrow is established between a step and its direct
successor only if they are not already connected via a red arrow. Blue arrows represent direct
succession in the visual/temporal sequence of steps, unlike red arrows, which do not necessarily
encode direct succession.

While arrows visualize ordering constraints, a group of steps (depicted as a dashed box in
Figure 2) represents the lack of ordering constraints. That is, a group is a set of actions that can
be performed in any order. For example, in Figure 2, the group involving adding ingredients to a
bowl precedes the step of adding sugar to the pan, but the order in which the ingredients are
added to the bowl does not matter.

The group as well as individual steps in a group can be involved in ordering constraints with
steps outside the group. By dragging a step into or out of a group, ordering constraints can be
relaxed or imposed between the step and the group. However, because grouping implicitly
specifies any ordering of the steps in the group, there cannot be fixed ordering constraints
between members of the same group. Consequently, the ESE prevents the creation of groups that
contain red arrows¾for example, moving the first two steps into the subsequent group would not

 DEMONSTRATION-BASED SOLUTION AUTHORING FOR SKILL ASSESSMENT

7

be allowed as the fixed ordering between them would be inconsistent with the non-ordering
implied by the grouping.

An earlier version of the ESE supported grouping but did not explicitly show implied
ordering constraints (blue arrows). We decided to add the visualization of implied ordering for
two reasons. First, the initial user study showed that users assume that actions will be performed
in the same order as in the trace, unless expressly indicated otherwise. While grouping effectively
communicated that the steps in the group could be performed in any order, there was no
corresponding visual cue for the implicit ordering between steps not contained in groups. Pilot
tests found that this approach could lead to confusion. Second, we were concerned that the lack of
an explicit visualization for the ordering constraints would lead to content authors forgetting to
relax ordering constraints (through grouping) that are not required for correct solutions. The
earlier version also did not support fixed ordering constraints (red arrows). This addition led to
the potential contradictions with groups described earlier. However, we decided to retain the
concept of explicit groups of unordered steps because we believe it improves understandability of
ordering requirements compared to approaches without groupings that would require many more
ordering annotations to be added. This meant generalizing the concept to support the retention of
required ordering constraints from steps within the group to steps outside of the group.

3.1.3 Annotations on Parameters

The ESE supports generalization of action parameters relative to an underlying type hierarchy,
which is defined as part of the underlying action model for the training domain. Authors can
generalize specific parameter values by selecting (super)types or by specifying (sets of)
enumerated instances. In Figure 3, the author is in the process of replacing the ‘PeanutButter’
parameter value in the first action with ‘AlmondButter’, a different instance of the ‘NutButter’
type. Alternatively, the user could generalize to ‘Any NutButter’ (type) or ‘Any Food’
(supertype). The menu options are dynamically determined based on the current parameter value
and its range of values. The ESE also supports generalizing numeric quantities through
specialized parameter editors that allow, for example, changing ‘1 cup’ to ‘between 2 and 3 cups’.

 Sometimes, it is desirable to change a particular value not only on one step, but in all the
steps that use that value. For example, instead of using the ‘LargeBowl’ throughout the exercise,
the user might decide that the ‘MediumBowl’ is sufficient. To support this function, when a
changed parameter value is entered and confirmed by the user and there are multiple occurrences
of the value, the ESE asks the user whether all occurrences should be changed. This is convenient
for editing longer solution models and also helps reduce errors. Such a global replace is converted
by the ESE into an equality constraint between the parameters involved. A further feature in the
ESE is highlighting all modified parameters (for example, ‘Blender’ in Figure 3) by comparing
the current model with the original model to identify differences.

3.1.4 Prompting

The preliminary user study revealed the need and desire for some sort of intelligent prompting
mechanism to help the solution author identify overlooked annotations. To this end, we
implemented a simple prompting mechanism in the form of a checklist presented to the author

M. GERVASIO, K. MYERS, AND M. WESSEL

8

after a distinguished ‘Finalize’ step. The checklist covered whether all possible parameter
variations has been specified, which steps could be done in any order, and which steps were
optional. Authors had to check off all three to complete the finalization step (see the checklist in
the bottom right of Figure 3). This idea was inspired by findings from the assessment community
that simple cueing mechanisms can generate small but measurable performance gains for tasks
that involve creative thinking (Green et al., 2012).

4. User Study: Solution Authoring

To evaluate our approach to solution authoring, we conducted a user study involving subjects
using the ESE to create solution models for a number of tasks. Our approach to solution authoring
consists of demonstration and annotation; this study is focused on the annotation process, under
the assumption that experts should have no trouble demonstrating a solution to a training exercise.
Because our target audience consists of domain experts, we needed a study domain where
subjects would have expert-level knowledge.1 Building on our earlier paper study, we chose
cooking, given that many people are experts in how they like to prepare their food, even if their
preparations may be highly personalized.

To support the user study, we developed an action model comprising 16 actions and a simple
object ontology with 40 classes defined over 5 levels, including 113 instances representing
different ingredients, kitchen equipment and appliances, and concepts. The ontology is not
intended to be comprehensive and the actions are not as specific as might be ideal (e.g., we use
the single action SPREAD to capture cooking actions more commonly distinguished as
SPRINKLE, SPREAD, and GREASE). Overall, though, the action model provides sufficient
coverage and variability while supporting generalizations required for recipes used in the study.

4.1 Experimental Protocol

We conducted a two-on-one (facilitator + note-taker vs. subject) study involving five subjects,
with each subject session taking one to two hours. To start each session, subjects were given a
short tutorial on the ESE and then asked to practice using the editor on a simple test trace to let
them achieve basic competence with the tool. The subjects were also asked to save their
annotated trace but we omitted the prompted review step so that we could better evaluate the
effects of prompting during the study tasks themselves. Subjects were introduced to the practice
of “thinking aloud” and were instructed to think out loud as they annotated the traces.

The subjects were then asked to create generalized solution models suitable for learner
assessment on three cooking tasks of moderate complexity. First, subjects were presented with a
recipe and a demonstration trace in the ESE representing one specific instance of the recipe (a
completely ordered sequence of actions with full specification of the arguments for each action).
Because the subjects did not create the traces themselves, they were given time to familiarize
themselves with the recipe and the trace, and instructed to treat the recipe as a starting point but to

1 We did not use the two real-world domains for which we had previously built significant prototypes because of the

unavailability of subjects with expert-level knowledge in those areas.

 DEMONSTRATION-BASED SOLUTION AUTHORING FOR SKILL ASSESSMENT

9

feel free to make annotations reflecting what they felt were the acceptable ways of performing the
cooking task represented by the recipe.

Next, the subject was asked to use the ESE to generalize the trace to a comprehensive model
of solutions for the cooking task. This involved adding annotations to generalize trace actions and
modifying the default sequencing information (the order the actions were performed). Table 1
summarizes the specific annotations supported in the ESE for the study.

When subjects indicated that they were done, they were asked to click the ‘Finalize’ button.
Doing so triggered a review phase where subjects were presented with the checklist designed to
prompt them into considering whether they had considered all relevant annotations. Subjects were
then left to complete the process without any further explanation or intervention. After the subject
completed the three tasks, the facilitator led an open-ended discussion to elicit feedback on what
was easy or hard about the task, and suggestions for capabilities that would make the task easier.
Finally, subjects were asked to complete two questionnaires: one on computer use (Schroeders &
Wilhem, 2011) and another on perceived system usability (Brooks, 1996).

Table 1. Annotations for generalization of the demonstration trace from the user study.

4.2 Results

The primary result of the study is that the ESE supports effective solution authoring: subjects
were able to understand the traces and to effectively create their intended solution models through
the annotation mechanisms. The five subjects (P1, P2, P3, P4, P5) were all SRI employees who
cooked regularly and were self-reported to be comfortable or very comfortable with computers.
All regularly use a variety of computer devices and software and had had exposure to some form
of programming (e.g., writing an Excel macro) in the past, but none were computer programmers
or scientists. We believe they are representative of the target audience for solution authoring—
people who are knowledgeable about the task to be encoded but not necessarily familiar with
formal encodings such as computer programs for interpretation by a computer.

4.2.1 Subjects understood the annotation task and found it to be straightforward

The thoughts spoken out loud by the subjects revealed that they understood the task of
generalization and were thinking about the various ways in which to correctly generalize the

	 Annotation	 Semantics	

Steps	 Reposition	 Change	the	position	of	a	step	within	the	overall	trace	

In	any	order	 Perform	a	group	of	steps	in	any	order	

Optional	 Step	is	not	required	as	part	of	the	solution	

Parameters	 Any	of	values	 Use	any	of	an	enumerated	set	of	values	(e.g.,	red	pepper	or	onion)	

Any	of	type	 Use	any	values	of	a	particular	type	(e.g.,	Cheese	or	Pasta)	

Range	 Use	a	range	of	values	(e.g.,	1-5)	

M. GERVASIO, K. MYERS, AND M. WESSEL

10

recipe (e.g., “Is order important…”, “Is it still grilled chicken even without the seasoning and
sauce?”, “Can you have granola bars without peanut butter?”). During the sessions, we realized
that a particularly important concept to convey to the subjects was that they were developing a
solution model to be used by a computer for automated assessment rather than creating an
instructional guide (a ‘recipe’) for a student to follow. With this clarification, subjects were
quickly able to change their mindset to think about a computer evaluating someone’s performance
rather than someone following a prescribed process.

Subjects quickly grasped the idea of parameter generalization but due to our limited ontology,
they were sometimes uncertain about whether generalizing to a type was the same as generalizing
to the all the individual instances listed as alternative values. Thus, subjects would sometimes
elect to check off all instances (Any of values) rather than simply selecting the type (Any of type).

For the most part, subjects understood the ordering constraints implied by the two types of
arrows. However, the red arrows (fixed ordering constraints) often required explaining more than
once and some subjects remained unsure about whether they needed to check them and whether
they could edit them (‘no’ to both). As discussed earlier, the blue arrows (implied ordering
constraints) are redundant with the natural ordering people infer when presented with a list of
actions but are useful for other reasons. Here, we observed that they appeared to help users
quickly more quickly grasp the concept of grouping—i.e., that the actions in a group can be
performed in any order but that they all have to occur before the next step in the sequence.
However, the subjects also expressed a desire to be able to group actions for other reasons—for
example, to represent subtasks or a set of related optional tasks.2

4.2.2 The annotations in ESE provide good coverage of desired generalizations

Subjects were able to use the existing annotations to make most of the generalizations they
wanted although they also expressed the desire to be able to specify additional, more
sophisticated generalizations. The annotations made by the subjects over the three solution traces
each are summarized in Table 2. The five subjects made an average of 16.53 parameter
annotations and 5.87 action annotations per recipe, for a total of 336 annotations overall. Subjects
varied in the number of annotations they made, with P2 making the fewest annotations at 36 total,
and P3 making the most at 101 total. The predominant parameter annotation was allowing values
beyond the one demonstrated (Any of values); there were 172 such annotations overall. The
predominant action annotation was marking a step as optional; there were 36 such annotations
overall. For the grouping (In any order) annotation, the individual groups contained 2–4 steps
each, with an average of 2.67 steps.

2 An initial version of the ESE supported a notion of grouping of steps independent of ordering constraints. We

removed that functionality for the user study out of concern that having two types of groupings might confuse users.
In retrospect, retaining that functionality would have been desirable.

 DEMONSTRATION-BASED SOLUTION AUTHORING FOR SKILL ASSESSMENT

11

Table 2. Summary of annotations made by subjects over three solution traces each.

Subject	
#Param	
annot.	

Any	of	
Values	

Any	of	
Type	

Diff	value	
#Action	
annot.	

Opt’l	 Diff	order	
Any	
order	

P1	 51	 21	 25	 5	 16	 9	 2	 5	
P2	 23	 10	 3	 10	 13	 5	 3	 5	
P3	 80	 70	 10	 0	 21	 7	 7	 7	
P4	 36	 25	 4	 7	 26	 7	 14	 5	
P5	 58	 46	 12	 0	 12	 8	 2	 2	

Totals	 248	 172	 54	 22	 88	 36	 28	 24	

An example of an original trace and an annotated version for a muffin recipe are shown
Figure 4. Here, P2 has relaxed the order in which the dry ingredients (sugar, baking powder, salt,
and flour) are added to the large bowl; and similarly for the wet ingredients. P2 has also
generalized the type of fat and the type of dairy to use as well as the amount of sugar and eggs.

The recipes naturally provided some expected generalizations (e.g., “1/4 teaspoon pepper,
optional,”, “peanut butter or almond butter,” “choice of cheese”). However, based on the results
from a pilot study, we decided that the subjects’ think-alouds would provide a more reliable
rubric for scoring their annotations against their intentions. All the subjects made all the

(a)
(b)

Figure 4. Partial trace for muffin recipe (a) and participant P2’s annotated version (b).

M. GERVASIO, K. MYERS, AND M. WESSEL

12

parameter annotations and optional step annotations that they wanted to (within the limitations of
the available annotations) and they did so correctly. Except for P5, who missed two action
groupings she expressed in the think-aloud, the subjects were also able to make the action
sequencing annotations they intended (both changing the order and grouping actions that could be
performed in any order).

4.2.3 Prompting is useful

Although prompting elicited few additional annotations, all the subjects found it useful and
desirable. Of the 336 total annotations made, only four were made after prompting—two by P1
(for one recipe) and two by P5 (one each for two recipes). However, we observed that prompting
made all the subjects pause to think about whether they had made all the generalizations in the
checklist (P1: “I examined everything…. I grouped everything…. I did [check all the optional
steps].”). All but P4 then reviewed the solution models for at least one of their cooking tasks.

When asked during the open discussion whether they found the prompting useful, all
expressed the strong opinion that it was definitely useful. This was somewhat surprising given
that most of the subjects seemed to just check off the items on the checklist, particularly with the
second and third recipes. Based on the subjects’ responses, there seemed to be a consensus that
checklists are useful in general, particularly when one is distracted or the resulting product is
important. We also observed that subjects seemed to learn from seeing the first checklist,
appearing to become more conscious about the scope of the generalizations they needed to make
for subsequent tasks.

4.2.4 Subjects found the ESE to be highly usable

The usability survey revealed high perceived usability of the ESE (86.50 on the System Usability
Scale (Brooke, 1996)).3 In particular, subjects found the ESE easy to learn and use, and felt
confident in using the system. Four of the five subjects agreed or strongly agreed that they would
like to use the ESE for authoring solution models and no one felt they would need technical
support or a lot of training to use the ESE.

The subjects did express a desire for some generalizations that would require more significant
extensions and design work¾for example, specifying groups within groups, conditional
optionality (e.g., when adding an optional ingredient, the succeeding Mix step should only
optional if adding the ingredient is omitted), dependencies between allowable values (e.g., an
appropriate bowl size depends on the amount used), and state-driven conditions for action
execution (e.g., cook “until the cheese is bubbling”). In spite of these limitations, the subjects
were all able to create solution models that described a reasonable space of acceptable solutions
for each of the cooking tasks and that they were satisfied with.

When asked about procedural tasks they performed as part of their work or were otherwise
aware of for which they could imagine creating solution models for training through the
annotation process embodied in the ESE, the subjects had no trouble coming up with numerous
examples, including running simulation experiments, safety/security procedures, payroll
processing, and proposal preparation.

3 SUS scores range from 0 to 100, with average scores around 65–69 and scores below 60 considered low.

 DEMONSTRATION-BASED SOLUTION AUTHORING FOR SKILL ASSESSMENT

13

5. Related Work

The use of end-user programming techniques for authoring ITS content originated with the work
of Blessing (Blessing, 1997), who applied it to learn production rules for a cognitive tutoring
system, in contrast to our focus on exercise solutions. The use of programming by demonstration
in (Koedinger et al., 2004) to develop content for example-tracing tutors requires explicit
demonstration of all possible solution paths; in contrast, our approach supports generalization
through annotation. The work in (Mohammed et al., 2005), which is more closely aligned with
the approach considered in our study, describes an authoring framework based on demonstration
plus annotation that was built to support an ITS for satellite management.

 The Steve system teaches hierarchical procedures for operating electro-mechanical devices
(Rickel & Johnson, 1999). Its domain models combine precondition/effects models to
characterize behaviors of individual actions and hierarchical task networks (HTNs) to describe
solution processes built on those actions. Demonstrations are used for learning HTNs,
supplemented by queries to the demonstrator to determine required effects (Angros et al., 2002).

6. Conclusions

The results of our user study provide initial evidence that our demonstration-based solution
authoring process is a practical, effective, and viable approach for enabling domain experts to
create solution models for automated assessment. We believe that there are several additional
directions to take this work to provide a comprehensive solution authoring capability.

 One is to extend the simple prompting mechanism to a more sophisticated capability aimed
at eliciting more problematic annotations. Participants in our preliminary study expressed
concerns about being overwhelmed with prompts, hence prompting should be used carefully. A
combination of logical and heuristic reasoning could reduce the need for exhaustive prompting.
For example, a prompting mechanism could build on causal reasoning techniques from the
automated planning community to identify those relationships that are not crucial to maintaining
the causal coherence of the action sequence and hence are good candidates for relaxation.

 Another interesting direction is to integrate more tightly the authoring with assessment and
demonstration, to enable content authors to interactively ‘try out’ and refine solution models. In
creating a model, an author could run assessments over sample learner traces to see what kinds of
assessment feedback gets generated and refine models accordingly, including providing
additional demonstrations. Ideally, the editor would also support a broader complement of
functions, such as being able to add/delete steps directly within a trace or to reuse models from
other exercises rather than having to re-demonstrate from scratch to perform such modifications.

Acknowledgments
This material is based upon work supported by the United States Government under Contract No.
W911QY-14-C-0023. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the Government.
The authors thank Chris Greuel and Chris Jones for their activities in support of this work.

M. GERVASIO, K. MYERS, AND M. WESSEL

14

References
Aleven, V., McLaren, B., Sewall, J. & Koedinger, K. (2009). A new paradigm for intelligent

tutoring systems: example-tracing tutors. Intl. J. of AI in Education, 19(2).
Angros Jr., R., Johnson, W.L., Rickel, J. & Scholer, A. (2002) Learning domain knowledge for

teaching procedural skills. Proc. of the 1st Intl. Joint Conf. on Autonomous Agents and Multi-
Agent Systems (AAMAS).

Brawner, K., Holden, H., Goldberg, B., & Sottilare, R. (2012). Recommendations for modern
tools to author tutoring systems. Proc. of the Interservice/Industry Training, Simulation and
Education Conference (I/ITSEC).

Blessing, S. (1997). A programming by demonstration authoring tool for model-tracing tutors.
Intl. Journal of AI in Education, 8, 233–261.

Brooke, J. (1996). SUS — A quick and dirty usability scale. Usability Evaluation in Industry,
189(194), 4–7.

Gervasio, M., Jones, C., & Myers, K. (2017). Approximate graph matching for mistake-tolerant
skill assessment. Proc. of the 5th Annual Conf. on Advances in Cognitive Systems.

Green, A., Cohen, M., Kim, J. & Gray, J. (2012). An explicit cue improves creative analogical
reasoning. Intelligence, 40, 598-603.

Greuel, C., Myers, K., Denker, G., & Gervasio, M. (2016). Assessment and content authoring in
semantic virtual environments. Proc. of the Interservice/Industry Training, Simulation and
Education Conference (I/ITSEC).

Koedinger, K.R., Aleven, V., Hefferman, N., McLaren, B., & Hockenberry, M. (2004). Opening
the door to non-programmers: authoring intelligent tutor behavior by demonstration. Proc. of
7th Annual Intelligent Tutoring Systems Conference.

Mohammed, J., Sorensen, B., Ong, J. & Li, J. (2005). Rapid authoring of task knowledge for
training and performance support. Proc. of the Interservice/Industry Training, Simulation and
Education Conference (I/ITSEC).

Myers, K. & Gervasio, M. (2016). Solution authoring via demonstration and annotation: An
empirical study. Proc. of the 16th IEEE Intl. Conf. on Advanced Learning Technologies.

Myers, K. Gervasio, M., Jones, C., & Keifer, K. (2013). Drill evaluation for training procedural
skills. Proc. of the 16th Intl. Conf. on AI in Education.

Rickel, J. & Johnson, W. L. (1999). Animated agents for procedural training in virtual reality:
Perception, cognition, and motor control. Applied Artificial Intelligence, 13.

Schroeders, U. & Wilhem, O. (2011). Computer usage questionnaire: structure, correlates, and
gender differences. Computers in Human Behavior, 27, 899–904.

