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ABSTRACT 
Learners in various contemporary settings (e.g., K-12 classrooms, 
online courses, professional/vocational training) find themselves 
in situations in which they have access to multiple technology-
based learning platforms and often one or more non-technological 
resources (e.g., human instructors or on-demand human tutors). 
Instructors, similarly, find themselves in situations in which they 
can provide learners with a variety of options for instruction, 
practice, homework, and other activities. We seek data-driven 
guidance to help facilitate intelligent instructional “hand offs” 
between learning resources. To begin this work, we focus on an 
important element of self-regulated learning, namely help seeking. 
We build classifier models based on proxies for learner prior 
knowledge and data-driven inferences about learners’ disengaged 
behavior (e.g., gaming the system) and affective states (e.g., 
confusion) to determine the extent to which (and when) learners 
tended to seek out help via human tutoring while using an 
intelligent tutoring system for mathematics. Insights into 
cognitive, behavioral, and affective factors associated with help 
seeking outside of a system will drive future work into providing 
automated, intelligent guidance to both learners and instructors. 
We close with discussion of the limitations of the present analysis 
and avenues for future work on intelligently guiding instructional 
hand offs. 
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1. INTRODUCTION 
The proliferation of technology-based learning platforms and 
applications (apps), including intelligent tutoring systems (ITSs), 
game-based learning environments, massively open online 
courses (MOOCs), training simulators, language learning apps, 
and practice apps, among others, creates a complex array of  

 

 

 

 

 

 

 

choices for learners and those who would seek to facilitate 
learning. Far from replacing human instruction, these technologies 
are often used in learning environments in which learners have 
access to both technological and human sources of instruction.1  

Instead of comparing the relative effectiveness of technological 
and human instruction (c.f. [12, 34]), we are concerned with the 
extent to which learners’ interactions with both technology-based 
and human resources can be treated as a system that is a target for 
optimization. One key target for optimizing such a system is the 
ability to intelligently guide “hand offs” or transitions between 
different learning apps and to guide learner help seeking as they 
use technology but also have access to (limited) human resources 
like an instructor or tutor. Work that considers such hand offs, and 
intelligent guidance for them (e.g., when a system or app could 
best provide feedback that directs the learner to an external 
resource because they need help or could benefit from practice on 
a pre-requisite skill that is not covered by the system or app), is 
limited, though one noteworthy exception attempts to provide 
adaptive assistance as students learn to program by suggesting 
open, online reading content related to errors made while the 
student programs [33]. 

One key element of self-regulated learning [37] is the ability for 
learners to appropriately and effectively seek out and use help 
when they need it [3, 27]. ITSs and other technology platforms for 
learning frequently provide learners with hints and other forms of 
scaffolding, guidance, and help. Unfortunately, learners often do 
not make efficient or extensive use of such help within ITSs [1, 
25, 36], and when they do, learners sometimes “abuse” such help 
[2], whether by rapidly seeking progressively more informative 
hints or attempting to “game the system” [6]. More recent work 
begins to explore when students ought to seek help within an ITS. 
For example, one study found that help avoidance earlier in the 
problem solving sequence, as students solve genetics problems in 
an ITS for genetics, is more strongly and negatively associated 
with robust learning outcomes, suggesting that early help seeking 
ought to be encouraged [4]. Work like that of [4] is a part of a 
broader literature focusing on providing meta-cognitive support 
and developing “meta-cognitive” tutors (e.g., [2]). 

Classroom practices in blended, K-12 classrooms also encourage 
self-regulated learning. Here, students typically have direct access 
to a teacher while they work within an environment like an ITS. 
Teachers often adopt strategies like “ask three then me” [17] to 
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while he was employed by Carnegie Learning, Inc., and later 
Carnegie Mellon University. 



encourage productive behavior with respect to help seeking, rather 
than over-reliance on the teacher. Following this strategy, for 
example, the student might use the hint feature of an ITS, and 
should that not provide sufficient clarity or guidance, ask the 
student on each side of her in the classroom before asking the 
teacher for help. Given tendencies to over-use and under-use help, 
better student self-regulation is one important element in 
optimizing the teacher’s scarce time. Ideally, over-users of help 
will start to rely on help provided by the ITS or their peers, 
encouraging productive collaboration among learners and 
enabling teachers to spend more time with students experiencing 
genuine struggle with content or who rarely seek out help despite 
needing it. 

In the present study, rather than a traditional or blended K-12 
classroom, we consider use of the Cognitive Tutor [26] ITS, in 
one or more of a sequence of two, five-week, fully online 
developmental mathematics course at a large, mostly-online 
university. In addition to an instructor, available to students via e-
mail and an online message board, students in these courses had 
optional and unlimited access to human mathematics tutors via a 
service called Tutor.com (TDC). We were able to obtain access to 
all chat logs with TDC, as well as detailed data on CT use, 
providing an ideal dataset to investigate how students navigated 
between human and automated support in this environment. 

In the present study, we focus on cognitive, behavioral, and 
affective factors that predict whether (and the extent to which) 
students using CT seek out help from human tutors via an online 
chat service called Tutor.com. To do so, we adopt a discovery 
with models approach [10] and build classifier models based on 
proxies for learner prior knowledge and data-driven inferences 
about learners’ disengaged behavior (e.g., gaming the system, 
guessing, off-task behavior) and affective states (e.g., confusion, 
boredom), relying on “detector” models of such factors [5-9]. 
Insights into cognitive, behavioral, and affective factors 
associated with help seeking outside of an ITS will drive future 
work into providing automated, intelligent guidance to both 
learners and instructors.  

2. COGNITIVE TUTOR (CT) & 
TUTOR.COM (TDC) 
Cognitive Tutor (now called MATHia in K-12 contexts and Mika 
in higher education contexts) is a mathematics ITS developed and 
distributed by Carnegie Learning, Inc. [26], used by hundreds of 
thousands of learners each year in K-12 and higher education 
learning contexts (see Figure 1). 

As illustrated in Figure 1, learners in CT work through complex, 
multi-step math problems. Within each problem, steps are mapped 
to fine-grained skills or knowledge components (KCs) [24]. KC 
mastery is tracked using Bayesian Knowledge Tracing [15].  

CT’s instructional approach is based on mastery learning [11], and 
it relies on BKT and these parameters to update estimates of a 
learner's mastery of the KCs it tracks, as they practice and learn 
the KCs, within each of its topical sections of content. Within 
each section, CT presents problems to learners that emphasize the 
KCs they have yet to master. After mastering all KCs in a section, 
learners “graduate” to the next section. Having failed to master all 
of a section's KCs by a certain pre-set limit (e.g., a maximum 
number of problems), the learner is “promoted” to the following 
section. MATHia/Mika analytics provide the teacher with 
information about graduation and promotion status; in promotion 
cases, teachers will know that the student has failed to master KCs 

for a particular topic, allowing them to provide some form of 
remediation, including possibly allowing for a second attempt to 
work through problems in the ITS later.  

As students learn and practice, CT provides context-sensitive, 
adaptive hints and other feedback. In a typical, blended, K-12 
classroom environment in which CT is frequently used, students 
using CT are in physical proximity to their fellow students and 
teachers, so they can rely on these resources for help if, for some 
reason, the CT is not providing sufficient feedback and help. In 
the present context, CT is used in a fully online context, so for 
real-time help, the student has to rely on human math tutors, made 
available to them via an online chat mechanism provided by 
Tutor.com (TDC). Student could also communicate 
asynchronously with their course instructors via e-mail and with 
their fellow students and instructor via an online message board, 
but data surrounding these means of communication were 
unavailable to the authors.  
TDC is a large provider of online, one-to-one, and on demand 
tutoring for students in a variety of domains and settings 
(including learners in K-12 public schools, colleges, universities, 
libraries, corporations, and the U.S. military). In the context of the 
present study, TDC tutors were accessible to students, via an 
online chat mechanism, as a part of their enrollment in the two 
developmental math courses of which CT was a mandatory 
instructional component and the primary means by which students 
were provided with problem-solving practice and exercises. 
Students were typically assigned several units of content (i.e., sets 
of sections of content) for each week of the course and allowed, 
generally, to progress at their own pace through those sections 
with the expectation that they would complete assigned content 
within the week in which it was assigned or shortly thereafter. 

 
Figure 1. Cognitive Tutor/MATHia/Mika screenshot 

3. DATA 
For the present study, the population of concern is comprised of 
16,905 adult students in at least one course (and in many cases 
both courses) in a sequence of two, five-week development 
mathematics courses for the time period of June 2014 to 
December 2014, inclusive. Of these 16,905 students over this time 
period, 80.4% (13,585) made no use of TDC. 3,320 students used 
TDC at least once during at least one of these courses, with a total 
number of 19,248 TDC sessions taking place over this six-month 
period. Tutoring chat sessions lasted from several minutes to over 
an hour, many occurring while learners simultaneously used CT 



Though outside the scope of this study, data available also 
included transcripts of the TDC tutoring chat sessions (and 
annotations of dialogue acts [32], instructional modes, and 
switches between these modes within these chat sessions) that 
allows for sophisticated analyses of interactions between human 
and automated tutoring systems like ITSs. These topics, using 
data from this context, have been explored elsewhere [28-29]. 
However, data like demographics, student background, and 
performance in other courses were not available to the authors. 

In the analysis that follows, we consider a subset of this 
population, including 3,119 students who used TDC at least once 
(i.e., all of the students for whom data could be processed for 
analysis) as well as a random sample of 1,874 students who did 
not use TDC over this time period.2 For these students, we have 
extensive usage data from CT and rely on the timestamps at which 
TDC sessions started to identify, for example, the CT login 
session that occurred before each TDC session. We also know, for 
each TDC User, the number of times they accessed TDC tutoring 
sessions as well as the duration of these sessions. 

CT data for these 4,993 students were processed into a format 
amenable to the LearnLab DataShop [20, 23]. These data are 
comprised of 88,497,091 learner actions (i.e., attempts at steps 
within problems, or tutor transactions in the DataShop parlance) 
(an average of 17,724 tutor transactions per student). 

The second course in the two-course sequence was more 
advanced and contains both more challenging content (as 
measured by CT hints requested and errors made) and fewer 
sections than the first course in the sequence. Nevertheless, there 
appear to be few major differences in TDC usage (considering 
session counts, etc.) between the two courses, so our analyses 
combine data from the two courses. However, not every student in 
the sample considered was enrolled in both courses over the time 
window we consider, so some students only have usage data from 
the first course and some only from the second course. 

4. INITIAL OBSERVATIONS & 
RESEARCH QUESTIONS 
Two related, initial observations inform the analyses of the rest of 
this work. The first relates to the extent to which a small minority 
of users accounts for a majority of TDC use. The second 
observation concerns the imbalance in the data, which informs the 
overall analytic approach we adopt. 

4.1 TDC Super-Users, TDC Users, and TDC 
Non-Users 
Figure 2 provides a histogram counting the number of students 
with a particular number of TDC sessions. As noted previously, 
over 13,000 students make no use of TDC and have zero TDC 
sessions. However, the long right tail of this histogram points to a 
small minority of students who have tens or even hundreds of 

                                                                    
2 Seemingly arbitrary counts of 3,119 students who used TDC at 

least once and the random sample of 1,874 students who never 
used TDC are largely the result of data collection and data 
processing limitations in the legacy deployment of Cognitive 
Tutor used by these students. Some students’ data were not 
reliably collected and/or processed (leading to the difference 
between 3,320 TDC Users and 3,119 students considered), and 
time constraints made it impossible to consider a larger sample 
of TDC Non-Users. Fortunately, present-day implementations 
of MATHia and Mika no longer suffer from such limitations. 

TDC sessions. We call students in the top 10% of TDC usage (by 
session, considering only students with at least one session) “TDC 
Super-Users.” The set of TDC Super-Users is comprised of 350 
students (or 2.1% of students in these courses over this period) 
and account for 55.4% of total TDC session time (4,100 hours of 
TDC session time). On average, TDC Super-Users spent 7.6 hours 
in TDC sessions over the period of one of these courses. TDC 
Users (2,769 students with at least one TDC session but who are 
not TDC Super-Users) spent a total of 3,367 hours in TDC 
sessions over this time period, with an average of .8 hours of TDC 
session time per course.   

 
Figure 2. Histogram of TDC sessions and student counts over 
both courses in the two-course developmental math sequence. 
Reproduced from [Fancsali, et al unpublished report]. 
Perhaps unsurprisingly, TDC Super-Users also spent more overall 
time in CT with an average of 61.7 hours of CT time per course. 
TDC Users spent an average of 48 hours in CT per course while 
TDC Non-Users spent only an average of 29.3 hours per course in 
CT. A more extensive analysis of specific differences and 
comparisons on various performance metrics for these groups 
within CT is found in [21]. 
Such numbers seem likely, though not necessarily3, to reflect 
over-use and near-certain under-use (for TDC Non-Users) of the 
human tutoring provided by TDC. Such over-use and under-use 
could reflect an underlying problem in terms of self-regulated 
help seeking. As such, two research questions are directed at the 
possibility of predicting whether a student is likely to be a TDC 
Super-User or a TDC User (versus TDC Non-Users). What are 
possible drivers of such extensive use of TDC? What behaviors 
and affective states might indicate a need for external help?  At a 
more granular level, the third question seeks to determine whether 
it is possible to predict from data from a particular CT login 
session that a student is likely to seek out TDC. 

As noted earlier, we center our attention on cognitive features 
(related to prior preparation for the course), behavioral features 
like gaming the system, and affective features like boredom, 

                                                                    
3 TDC Super-Users, the set of which, for example, could include 

learners with some form of learning disability like dyscalculia, 
may derive great learning benefit from interacting with these 
tutors at the level at which they do (and may need relatively 
intense remediation to succeed), but this benefit comes at the 
relatively greater expense of the real-time, chat-based tutor, 
compared to, for example, regularly setting up time to interact 
with the instructor or finding other resources for the student to 
consider when they need such intense help. 



among others, that may help to inform future work and provide 
practical guidance to teachers and facilitators of instruction. 

4.2 Research Questions 
For each of the following questions, there is a corresponding 
prediction task for which we consider cognitive, behavioral, and 
affective factors. Insight provided by predictive models for these 
tasks (i.e., a better understanding of how prior preparation, 
disengaged behavior, and affect are associated with seeking 
human help) is our primary concern in this work.  Cognitive 
factors we consider are related to performance within the first 
week of a course as a proxy for prior knowledge of the topic and 
initial effort in the course. Behavioral factors are related to learner 
disengagement. We detail the features for each prediction task in 
§5.4. 

• What factors predict that a student will be a TDC Super-
User? [Prediction Task #1] 

• What factors predict that a student will be a TDC Super-
User or a TDC User? [Prediction Task #2] 

• What factors predict that a particular student login 
session within CT will be followed by a TDC session? 
[Prediction Task #3] 

For each prediction task, we also consider overall performance 
metrics for models we describe in §5.3, including accuracy, 
precision, recall, and AUC to demonstrate the possibility of 
delivering successful predictive models for these tasks.  

We present the tasks in roughly the order of difficulty from easiest 
to hardest. In the first task, we attempt to distinguish TDC Super-
Users from TDC Non-Users, which we a priori expect to be an 
easier task than distinguishing all users of TDC (i.e., the union of 
the set of TDC Super-Users and TDC Users) from TDC Non-
Users. Finally, looking at individual CT login sessions, we seek 
characteristics of a student’s behavior and affect within the CT 
session itself as well as general characteristics of the student that 
may predict she is likely to seek out human help. 

The predictive models learned for each of these tasks are 
retrospective (or perhaps descriptive) in the sense that they rely on 
data aggregated over students’ entire usage of Cognitive Tutor in 
one or both classes for Prediction Tasks #1 and #2 and data from 
an entire login session for Prediction Task #3. They serve to help 
direct future studies toward particular factors that might be 
included in online algorithms or recommendation systems that 
implement intelligent instructional hand offs (i.e., in real-time, 
provide a recommendation that it would be conducive to learning 
for a student to seek out the help of human tutor from TDC, for 
example, rather than continue to struggle in Cognitive Tutor). 

5. METHODS & APPROACH 
In this section, we describe our discovery with models approach, 
using the output of data-driven behavior and affect detectors as 
input to classifier models to produce predictions for each of our 
three prediction tasks. We also describe our iterative under-
sampling approach to deal with the extent of imbalance present in 
this dataset. 

5.1 Data-Driven Behavior & Affect Detectors 
Extensive literature in educational data mining, learning analytics, 
human computer interaction, and other disciplines focuses on 
using sensor-free, data-driven approaches for platforms like ITSs 
to make inferences about student behavior and affect. This 
literature has produced a wide variety of “detector” models for 
various behaviors, especially related to disengagement, and 

affective states for a bevy of learning platforms (e.g., [5-9, 22, 31, 
35]). 

In this work, we rely on detectors of disengaged behavior and 
affect while students use CT. Detectors were implemented for 
gaming the system [7], off-task behavior [9], and affective states 
including: boredom, confusion, frustration and engaged 
concentration [8]. In addition, we implemented contextual models 
of guessing and slipping to estimate the extent to which each may 
have been responsible for correct and incorrect answers (i.e., 
estimating when it may be likely that students are guessing 
correctly without KC mastery and slipping to produce an incorrect 
answer despite mastery of a KC) [5]. Contextual slip models have 
been used as detectors of carelessness in previous work [19, 31].  
Gaming the system [6] refers to behavior directed at making 
progress through content without genuine learning. Learners may 
try to make progress by adopting strategies like relying on 
"bottom out" hints that provide the answer or by providing 
numbers that appear within problem statements as answers to 
questions, among other shallow (at best) learning strategies. 

Detectors we deploy in this study have been successfully used 
with a similar population of learners in previous work [18-19]. 
Detectors of gaming the system, off-task behavior, and models of 
contextual guessing and slipping produce predictions at the level 
of individual learner actions (i.e., attempts at problem-solving-
steps) while detectors of affective states produce predictions about 
“clips” or time intervals of approximately 20 seconds. For a more 
extensive summary of the features that are “distilled” from CT log 
data to serve as input to the underlying machine learning models 
that constitute these detectors, please see papers cited for each 
detector [7-9] as well as the papers describing their use with a 
similar population of higher education CT learners [18-19]. 

5.2 Imbalanced Data & General Approach 
For each prediction task, we adopt an iterative scheme to deal 
with the fact that each task involves imbalanced data in terms of 
the target of predictive interest. While a variety of approaches are 
amenable to the task of dealing with imbalanced data, in the 
present study, we are primarily interested in establishing the 
characteristics of disengaged behaviors, affective states, and prior 
knowledge that predict that students seek out human help, so we 
adopt a strategy of iteratively considering balanced samples of 
data, building classifier models on these balanced samples, and 
considering the factors that contribute to the success of these 
classifiers. For Prediction Task #1, there are 350 TDC Super-
Users and 1,874 TDC Non-Users. For Prediction Task #2, there 
are 3,119 TDC Super-Users and TDC Users and 1,874 TDC Non-
Users. For Prediction Task #3, 3,058 of the 3,119 TDC Super-
Users and TDC Users have at least one CT login session that is 
followed by a session with a TDC tutor while there are 580,528 
CT login sessions overall.4  
For each prediction task, we create a balanced sample by under-
sampling the appropriate majority class in each of 500 iterations, 
building classifier models in each. For Prediction Task #1, this 
means creating (500x) a sample (with student-level features we 
describe in §5.4) of the same 350 TDC Super-Users and a random 
sample of 350 TDC Non-Users. For Prediction Task #2, we create 
a sample (again, 500x, with student-level features) containing the 

                                                                    
4 61 students use TDC one or more times before using CT in the 

courses, so there are no CT sessions from which data can used 
to better understand what predicts that student’s decision to use 
a TDC tutor. 



same 1,874 TDC Non-Users and a random sample of 1,874 
students drawn from TDC Users and TDC Super-Users. For 
Prediction Task #3, we randomly sample one CT session per 
student that is followed by a TDC session and randomly sample 
one CT session per student (also chosen at random) that is not 
followed by a TDC session, resulting in a sample of 6,116 CT 
sessions for which we have CT session-level features we describe 
in §5.4. This approach for Prediction Task #3 avoids violations of 
independence that would be introduced by students with multiple 
TDC sessions were we to consider more than one session per 
student.  

In each iteration, we have a balanced dataset of student-level or 
CT-student-session-level features that can be used as predictors in 
classifier models. We take a 60%-40% split of this dataset into 
training and test sets, and build classifier models using 5-fold 
cross validation on the training set, which, given the way we have 
constructed the training and test set, is student-stratified cross 
validation. We apply the best performing model in terms of 
accuracy over this 5-fold cross validation to the held-out test set. 
Having done this process 500x for each prediction task, we 
consider the mean (and standard deviation of) performance over 
these iterations using metrics of accuracy, precision, recall, and 
area under the ROC curve (AUC). We also consider the specifics 
of a representative model for each prediction task to provide 
insights into which features are predictive of seeking out human 
help. 
To test the robustness of this approach, for the case of Prediction 
Task #2, which is not drastically imbalanced (i.e., 37.5% of 
students in the sample are non-TDC Users), we consider models 
learned without using this iterative under-sampling scheme. We 
show that results are comparable in terms of AUC and compare 
other performance metrics between the approach, helping to 
establish possible bounds on expected predictive accuracy and 
other metrics. Classification accuracy, for example, in this under-
sampling scheme is perhaps an especially optimistic estimate of 
what can be achieved.  

5.3 Classifier Models 
We consider four types of models to drive classification and 
prediction: logistic regression (LR), random forest (RF) [13], and 
support vector machines [16] with both linear (SVML) and radial 
kernels (SVMR). For each model, we consider the case in which 
the models output binary classifications as well as probabilities 
for each of the binary classes of the target variable. In this way, 
we are able to consider classification accuracy, precision, and 
recall, as well as AUC as a further comparison of performance 
compared to chance. Estimated LR models provide a convenient 
way to consider the significance of features included in these 
models, so we illustrate the importance of variables in these 
models in this way.  

5.4 Feature Construction 
For Prediction Tasks #1 and #2, student-level features are 
constructed over usage for the entire period of time over the 
courses in which each student had usage (either the first course, 
second course, or both). Such features provide for a general 
profile of how students worked through content in these two 
courses. Features represent predictions made by detector models 
as previously described as well as variables related to student 
performance and usage in their first week of CT usage in the first 
course they encountered (if they used CT in both courses). 
Features constructed from “Week 1” data are proxies, however 
noisy, for student prior preparation and initial knowledge, as other 

measures, as previously noted, were unavailable. Each variable is 
constructed as a normalized z-score over all students in the dataset 
(i.e., the unit for each variable is the number of standard 
deviations above or below the mean value for each feature): 

• Assistance Per Step: Mean number of hints requested + 
errors per problem-solving step 

• Gaming the System: Proportion of student actions 
inferred to be instances of gaming the system behavior. 

• Off-Task: Proportion of student actions inferred to be 
instances of off-task behavior. 

• Guessing: Proportion of correct student actions inferred 
to be possible instances of having correctly guessed. 

• Slipping: Proportion of incorrect student actions inferred 
to be possible instances of having slipped despite KC 
mastery. 

• Boredom: Proportion of problem solving clips in which 
students were judged by detector models to have been 
bored. 

• Frustration: Proportion of problem solving clips in 
which students were judged by detector models to have 
been frustrated. 

• Confusion: Proportion of problem solving clips in which 
students were judged by detector models to have been 
confused. 

• Engaged Concentration: Proportion of problem solving 
clips in which students were judged by detector models 
to be in a state of engaged concentration. 

• Week 1 Sections: Number of sections of content 
encountered in the first week of either course (or across 
both). 

• Week 1 Assistance: Hints requested and errors made in 
the first week of either course (or across both). 

• Week 1 Time: Amount of time spent using Cognitive 
Tutor in the first week of either course (or across both). 

• Week 1 Sections/Hour:  Number of sections of content 
encountered per hour in the first week of either course 
(or across both). 

• Week 1 Assistance/Hour: Number of hints requested and 
errors made per hour in the first week of either course 
(or across both). 

• Week 1 Completer: binary indicator that a student 
encountered 90% of the sections in the first week’s 
assignment in either course (or across both). 

For Prediction Task #3, CT login-session level features are 
considered. These features are not normalized, but rather the same 
proportions as for Prediction Tasks #1 and #2 but with respect to a 
particular CT login session. For example, Assistance Per Step is 
calculated over only problem-solving steps within a CT session. 
Gaming the System is calculated as the proportion of student 
actions within a CT login session that are predicted to be instances 
of gaming the system, and Boredom is calculated as the 
proportion of problem-solving clips within a CT login session for 
which detector models infer that a student is bored.  Week 1, 
student-level variables are also included in these models. 



6. RESULTS 
For each prediction task, we first describe the predictive 
performance for each of the models we deploy, and then we 
consider a “representative” logistic regression model that provides 
insight into the factors that help us to achieve success on these 
tasks. We describe the sense in which we consider these logistic 
regression models to be “representative” in the following sub-
section. 

6.1 Prediction Task 1: TDC Super-Users 
We expect the task of distinguishing TDC Super-Users from TDC 
Non-Users to be the “easiest” a priori, in the sense that we expect 
that we will be able to achieve better performance on the task, an 
expectation which is borne out by our results. Table 1 shows that 
logistic regression (LR) performs comparably to a support vector 
machine with a linear kernel (SVML) with mean accuracy over 
500 iterations of .712 and nearly identical values for precision, 
recall, and AUC. Recall that .5 accuracy represents chance 
accuracy (and .5 AUC represents chance performance, as ever) 
because we under-sample to produce a balanced dataset in each 
iteration. 

Table 1. Mean and standard deviation (in parentheses) for 
accuracy, precision, recall, and area under the ROC curve 

(AUC) over 500 iterations for the task of predicting whether a 
student is a TDC Super-User (versus a non-TDC User) [LR = 
Logistic Regression; RF = Random Forest; SVML = Support 

Vector Machine with Linear Kernel; SVMR = Support Vector 
Machine with Radial Kernel] 

Model Accuracy Precision Recall AUC 

LR .712 
(.025) 

.701 
(.029) 

.744 
(.042) 

.786 
(.024) 

RF .705 
(.025) 

.698 
(.028) 

.727 
(.042) 

.771 
(.024) 

SVML .712 
(.024) .702 (.03) .743 

(.048) 
.788 

(.023) 

SVMR .665 
(.025) .65 (.03) .7245 

(.056) 
.723 

(.027) 
 

Table 2 provides a representative, estimated logistic regression 
model that provides insight into student-level factors that are 
associated with a student being a TDC Super-User. The model is 
representative in the sense that, upon inspection of multiple 
models built on training sets sampled in the way we described 
above, the significant variables in the model of Table 2 were 
generally those that were significant. We then specified logistic 
regression models including only the variables that are reported 
significant in Table 6 and found that these models, over hundreds 
of iterations, achieved results nearly identical to those reported for 
logistic regression in Table 1. Spot inspections of model 
parameters in numerous models produced by the iterative process 
also aligned with those reported in Table 2 in terms of both sign 
and magnitude. This same notion of representative logistic 
regression models is used for each of the three predictive tasks we 
consider to provide insight into the variables that contribute to 
such models. 

The model of Table 2 suggests that the four significant factors for 
predicting that a student will be a TDC Super-User are Off-Task 
disengagement, Boredom, Guessing, and Week 1 Sections/Hour. 
Pairwise Pearson correlations among these significant predictors 
are small, with no statistically significant correlation between 
Guessing and Off-Task disengagement, and the largest significant 
correlation is that between Week 1 Sections/Hour and Boredom (r 

= .36; p < .001). These observations, combined with the 
consistency of models learned over only these significant 
predictors, instill confidence in our interpretation of the logistic 
regression coefficients. However, multi-collinearity among some 
of the other predictors (especially, for example, Gaming the 
System and Confusion: r = .76; p < .001) requires us to exercise 
caution in interpreting other coefficients in this representative 
logistic regression model. Roughly these same observations about 
the significant predictors as well as caveats concerning the 
interpretation of the non-significant estimated regression 
coefficients are operative for Predictive Tasks #2 and #3.  

While disengagement is positively associated with TDC Super-
User status, the Boredom, Guessing, and Week 1 Sections/Hour 
are negatively associated with TDC Super-User status, indicating 
that students who are inferred to be less bored, less likely to be 
haphazardly guessing, and better prepared for the coursework (as 
indicated by efficient progress through content in the first week of 
the course) are less likely to seek out human help extensively.  

Table 2. Representative estimated logistic regression model 
for the task of predicting whether a student is a TDC Super-
User (versus a non-TDC User). Rows for significant variables 

at α = 0.05 are bold and italicized. 

Variable Coefficient Std. 
Error p-value 

(Intercept) -.756 .604 .21 

Assistance Per Step .664 .526 .207 

Gaming the System .103 .271 .704 

Off-Task .35 .161 .03 

Guessing -.611 .306 .046 

Slipping .135 .17 .429 

Boredom -.774 .292 .009 

Frustration .249 .182 .172 

Confusion -.084 .233 .72 
Engaged 

Concentration .376 .306 .218 

Week 1 Sections .361 .193 .061 

Week 1 Assistance -.333 .322 .302 

Week 1 Time .058 .277 .833 
Week 1 

Sections/Hour -1.365 .425 .001 

Week 1 
Assistance/Hour .052 .285 .856 

Week 1 Completer .478 .636 .452 

6.2 Prediction Task 2: TDC Users + TDC 
Super Users 
As expected, we find that distinguishing those students who used 
TDC at least once (the set of TDC Users + TDC Super-Users) 
from TDC Non-Users is more “difficult” in the sense that models 
achieve a lower degree of classification accuracy, precision, and 
recall, as well as a lower AUC (Table 3). 

Inspection of the representative, estimated LR model in Table 4 
indicates that in addition to the three same features that are 
significant in predicting TDC Super-User status (i.e., Off-Task 



disengagement, Boredom, and Guessing), Week 1 Time is a 
significant predictors that students will have used TDC at least 
once, suggesting that this measure of time provides different 
information to help distinguish between these categories of 
students.  

Table 3. Mean and standard deviation (in parentheses) for 
accuracy, precision, recall, and area under the ROC curve 

(AUC) over 500 iterations for the task of predicting whether a 
student used TDC at least once (i.e., TDC Super-User or TDC 
User versus a non-TDC User) [see model acronyms in caption 

for Table 1] 

Model Accuracy Precision Recall AUC 

LR .614 
(.0111) .62 (.012) .592 

(.023) 
.666 

(.012) 

RF .615 
(.0109) 

.614 
(.0115) 

.618 
(.0209) 

.66 
(.0113) 

SVML .612 
(.0105) 

.624 
(.0133) 

.5651 
(.0377) 

.6656 
(.0113) 

SVMR .598 
(.0115) .6 (.013) .591 

(.0332) 
.629 

(.0121) 
 

Table 4. Representative estimated logistic regression model 
for the task of predicting whether a student is a TDC User 

(versus a non-TDC User). Rows for significant variables at α = 
0.05 are bold and italicized.  

Variable Coefficient Std. 
Error p-value 

(Intercept) -.1 .2 .617 

Assistance Per Step -.068 .118 .564 

Gaming the System -.05 .092 .586 

Off-Task .133 .063 .035 

Guessing -.233 .071 < .001 

Slipping -.021 .056 .706 

Boredom -.527 .088 < .001 

Frustration .067 .045 .142 

Confusion .132 .092 .149 
Engaged 

Concentration .042 .096 .661 

Week 1 Sections -.117 .064 .067 

Week 1 Assistance -.226 .115 .05 

Week 1 Time .378 .128 .003 
Week 1 

Sections/Hour -.135 .077 .08 

Week 1 
Assistance/Hour -.085 .081 .29 

Week 1 Completer .205 .213 .335 
 

Since this prediction task is the least imbalanced of the three we 
consider, we also consider learning models without our adopted 
under-sampling scheme. Though we omit extensive analysis of 
these models for brevity, Table 5 provides performance metrics 
for LR and RF models learned by taking a 60-40% training-test 
split of all students, learning models using 10-fold cross validation 

on the training set and applying the model with greatest accuracy 
to the test set. We find that this model modestly out-performs the 
trivial, majority class classifier in terms of classification accuracy 
with comparable precision, but recall of this model is substantially 
greater than that achieved by typical models in our under-
sampling scheme.  
Building on our observations from the previous model, since 
Week 1 Time has a positive parameter estimate, students who take 
more time to work through content in the first week, and perhaps 
work more diligently by guessing less as they make problem-
solving attempts, may be more likely to seek out help via TDC. It 
is possible that otherwise relatively diligent students (by some 
measures) who seek out TDC begin to adopt a sub-optimal 
learning strategy of some sort that is indicated by the Off-Task 
detector more frequently than those students who do not seek out 
TDC. 

Consequently, the F measure (one commonly used evaluation 
metric that balances precision and recall) would be greater for 
these models than for those of the typical models of our under-
sampling scheme. Nevertheless, AUC of these models are nearly 
identical to mean values of models learned according to our 
under-sampling scheme. Perhaps more importantly, the estimated 
logistic regression model points to exactly the same set of 
significant behavioral and affective features, Off-Task 
disengagement, Boredom, and Guessing, as the model reported in 
Table 4. Week 1 Time is also significant in models using both 
approaches, though Week 1 Sections, Week 1 Assistance/Hour, 
and Week 1 Completer are significant in the model that does not 
rely on under-sampling.  

Table 5.  Accuracy, precision, recall, and area under the ROC 
curve (AUC) for the task of predicting whether a student used 

TDC at least once (versus a TDC Non-User) for models 
estimated without relying on under-sampling scheme (trivial 

majority classifier accuracy = .625) 

Model Accuracy Precision Recall AUC 

LR .666 .684 .865 .669 

RF .651 .68 .832 .659 
 

6.3 Prediction Task 3: TDC Sessions Follows 
a CT Login Session 
As expected, the most difficult task was to predict whether a 
particular CT session was going to be followed by a TDC session, 
as illustrated by the performance metrics for the various models 
we consider in Table 6. 

Table 6. Mean and standard deviation (in parentheses) for 
accuracy, precision, recall, and area under the ROC curve 

(AUC) over 500 iterations for the task of predicting whether a 
particular student CT session is followed by a session with a 

TDC tutor [see model acronyms in caption for Table 1] 

Model Accuracy Precision Recall AUC 

LR .599 
(.009) 

.604 
(.015) 

.579 
(.021) .633 (.01) 

RF .587 (.01) .587 
(.014) 

.592 
(.023) 

.621 
(.011) 

SVML 0.6 (.009) .61 (.015) .559 
(.023) .633 (.01) 

SVMR .598 (.01) .606 
(.017) 

.567 
(.031) .632 (.01) 



 

Table 7 provides a representative, estimated LR model that 
provides insight into the factors that are predictive of a student’s 
tendency to seek out human tutoring via TDC from within a 
particular CT session. Here, Boredom appears again, along with 
Engaged Concentration (which was significant in neither 
Prediction Task #1 nor Prediction Task #2), as a significant, 
negatively associated predictor. We also find that Gaming the 
System, another form of disengagement, is positively associated 
with a tendency to seek out immediate help via TDC, along with 
Week 1 Sections. 

At the level of student-login sessions in Prediction Task #3, 
Gaming the System and the other detected factors are no longer 
highly correlated (as they were when we considered student-level 
aggregated features in Prediction Tasks #1 and #2). Rather # Hints 
and # Errors and Week 1 Time and Week 1 Assistance are 
relatively highly correlated, leading us to exercise caution in the 
interpretation of estimated coefficients associated with these 
(insignificant) predictors. 

Table 7. Representative estimated logistic regression model 
for the task of predicting whether a particular student CT 

login session is followed by a session with a TDC tutor. 
Coefficients are un-standardized. Rows for significant 

variables at α = 0.05 are bold and italicized. 

Variable Coefficient Std. 
Error p-value 

(Intercept) 1.321 .364 < .001 

# Errors -.002 .001 .177 

# Hints .002 .001 .262 

Gaming the System 1.367 .23 < .001 

Off-Task .612 .652 .348 

Guessing -.718 1.207 .552 

Slipping -.197 .491 .689 

Boredom -.783 .149 < .001 

Frustration .12 .316 .705 

Confusion .213 1.32 .872 
Engaged 

Concentration -1.575 .229 < .001 

Week 1 Sections .021 .006 < .001 

Week 1 Assistance -.0001 .0001 .179 

Week 1 Time .003 .01 .733 
Week 1 

Sections/Hour -.021 .019 .263 

Week 1 
Assistance/Hour -.0004 .001 .68 

 

7. DISCUSSION 
7.1 Highlights & Summary 
At least two qualitative findings are robust in the modeling 
presented. First, as inferred by detector models in CT, Boredom is 
negatively associated with a tendency to seek out human help 
outside of the CT ITS via the TDC service in both the aggregate 
(Prediction Tasks #1 and #2) as well as the more immediate term 

(Prediction Task #3). Especially when combined with the negative 
association of Guessing with seeking out TDC’s services in 
Prediction Tasks #1 and #2, this suggests at least a modicum of 
baseline diligence in working within CT for those who sought out 
TDC. However, the second robust finding may point to the 
adoption of counter-productive strategies that may also lead 
students to require assistance outside of the ITS. This second 
robust finding is that two facets of learner disengagement inferred 
by such detector models, Off-Task behavior and Gaming the 
System, are positively associated, in the aggregate and more 
immediately, respectively, with seeking human assistance outside 
of the CT ITS. These insights contribute to a bevy of literature 
concerning various aspects of the technology-enhanced learning 
experience, generally centered on learning outcomes and learners 
using ITSs, which are associated with these phenomena (e.g., [14, 
18, 30]). 

7.2 Limitations 
While we consider a rich, substantial data set with thousands of 
learners, the present analysis is not without its limitations. First, 
we merely consider learning models to predict that a student is 
likely to be particular “type” of TDC user or that a particular CT 
login session is likely to be followed by a session with a TDC 
tutor. We do not consider the effectiveness of TDC sessions, 
though some work has begun to consider that question [28-29], or 
attempt to deeply link the specific KCs within CT on which 
students may have been working when they sought out TDC. This 
dataset also offers the opportunity to consider CT usage and 
performance (possibly at the level of fine-grained KCs) before 
and after a TDC session as a type of pre- and post-test for these 
sessions. 

Further, this is a purely retrospective, observational study, and the 
empirical frequencies with which students sought out (and did not 
seek out) help via the TDC service reflects likely over-use and 
near certain under-use. While the models we have learned have 
provided insights into the context in which these data were 
collected, data from scenarios and contexts in which we suspect 
that such use of human tutors is more attuned to need would 
provide interesting contrast cases to the present study. In addition, 
while associations uncovered by predictive models like those 
presented could arise due to causal relationships between factors 
captured by these predictors, the present analysis does not provide 
us evidence for any such claims. While adopting counter-
productive strategies like gaming the system in CT may precede 
seeking out human help, is such a counter-productive strategy 
really the cause of seeking such help? If we were to conceive of a 
clever intervention to reduce gaming the system behavior, would 
that reduce the incidence of learners seeking out human help? 
Future work might more carefully observe students in 
environments in which they can seek out human help while using 
an ITS (or other systems) to elicit their explanations for help 
seeking, or experimental studies might consider interventions that 
tend to increase or decrease the extent to which students rely on 
external help. 

8. FUTURE WORK 
In addition to several opportunities noted in the previous section, 
we consider two “big” ideas with respect to future work. 

8.1 Information vs. Affirmation 
One concern with this analysis is that we are building models that 
combine different motives for students to seek out human 



assistance. Consider the following dialog (a slightly edited TDC 
interaction): 

Tutor: hi! what can I help you with today?      
Student: Do you know how to do a factor table?      
Tutor: Hmm I am familiar with it. Is there a problem that 
you wanted to go over?      
Student This looks like an easy one, but I am not sure so I 
just want to make sure I understand this correctly   
Student: To check this table is all you do multiply the top 
row by the 7x and see if it matches the bottom row? Is this 
right? 
Tutor: Yeah everything looks good to me. Great job!     
Student: I was hoping that I did this right. 

We call this kind of interaction a request for “affirmation,” rather 
than information. The tutor is not teaching the student anything, 
just verifying that the student’s approach is correct. The 
conditions leading to this type of interaction are likely to be very 
different from information requests. They may occur when 
students have high knowledge but low confidence, for example. 
Future work will explore models that separate information from 
affirmation sessions. 

8.2 Instructional Hand Offs 
In contemporary K-12 classrooms, online courses, and other 
settings for learning, students may seek instruction, assistance, 
remediation, opportunities for enrichment, and even affirmation 
from multiple resources, including technology resources like ITSs 
and non-technological resources like human beings. Especially 
when at least one of these resources is technological, providing 
adaptive, intelligent guidance to learners as to when they should 
use particular resources and applications (or persist and try to 
“stick with it” and learn within a particular application) will be 
crucial. In the present study, we have sought to better understand 
cognitive, behavioral, and affective factors that predict that a 
student may seek help from a non-ITS resource like a human tutor 
while using the CT ITS for math, but other types of instructional 
hand offs should also be considered. 

Hand offs between instructional applications might happen, for 
example, between an ITS and a simulation-based training 
environment. When a student has completed all of the skills for 
which the ITS provides instruction, the simulation-based training 
environment that includes some overlapping content with the ITS 
could tailor its simulated scenarios around emphasizing elements 
of those skills in the ITS on which the student struggled and de-
emphasize skills that the student easily mastered within the ITS. 
This is likely to require a lingua franca shared by the ITS and the 
simulator about the competencies or skills that are tracked by 
each, or perhaps both may rely on a set of external standards or 
some other way of indicating how this type of hand off based on 
such cognitive factors may work. Efforts including the 
development of the Experience API5 (xAPI), the Total Learning 
Architecture6 (TLA), and the Generalized Intelligent Framework 
for Tutoring7 (GIFT) exemplify moves in directions that would 
enable progress toward these and similar goals. 

                                                                    
5 https://github.com/adlnet/xAPI-Spec 
6 https://www.adlnet.gov/tla/ 
7 https://www.gifttutoring.org/ 

Of course, even in the case of guiding an instructional hand off 
between an ITS and a human tutor (or K-12 classroom teacher) 
for a student who needs help with content covered by the ITS, the 
ITS ideally should be able to communicate to the human tutor or 
classroom teacher that the learner in question requires assistance 
on a particular skill, just needs a confidence boost, or has been 
adopting counter-productive and/or disengaged learning strategies 
like gaming the system that should probably be discouraged. 
Insights into predictors of help seeking may help to drive 
development of recommendations delivered by the learning 
application to the learner or could also drive recommendations to 
a teacher via an application that surfaces insights from the ITS. 

We hope this work provides a step toward more work on these, 
and related, problems. 
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