

VERSION 1.0.1

 SPECIFICATION RELEASE DATE: 1 OCTOBER 2013

 THE ADVANCED DISTRIBUTED LEARNING (ADL) INITIATIVE

 This document was authored by members of the Experience API Working Group (see list on
pages 3-4) in support of the Office of the Deputy Assistant Secretary of Defense (Readiness),
Director, Training Readiness and Strategy, Advanced Distributed Learning (ADL) Initiative.

This PDF copy of the specification was synchronized with the authoritative document that resides
on the ADL GitHub site - https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md - on 1 October
2013 and is considered to be version 1.0.1. It represents a snapshot of the authoritative
document. Please go to https://github.com/adlnet/xAPI-Spec to view the most current version of
the specification.

Note that this release of the xAPI Specification is only a patch release. In accordance with
semantic versioning, which xAPI follows, there are no functional changes within this
version. Points have been clarified, including some areas of the document where conflicting
information may have been given. This document provides authority in such cases of
discrepancy. As this is only a patch release and not a minor version (dot release), ADL does not
encourage the maintenance of separate LRSs, content, tools, etc. for both 1.0.0 and 1.0.1
versions. The two should be functionally similar. Please see the versioning details of the
document for processes surrounding 1.0.X versions and other details. Certain areas of the
document were not revised, such as the contributors and examples; these updates will
accompany minor and major patches.

Please send all feedback and inquiries to: helpdesk@adlnet.gov

 Copyright 2013 Advanced Distributed Learning (ADL) Initiative, U.S. Department of Defense

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except
in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md
https://github.com/adlnet/xAPI-Spec
mailto:helpdesk@adlnet.gov
http://www.apache.org/licenses/LICENSE-2.0

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-0) i

„

TABLE OF CONTENTS
1.0 Revision History of the Specification .. 1

2.0 Role of the Experience API .. 3

2.1 ADL‟s Role in the Experience API ... 3

2.2 Contributors ... 3

2.1.1 Working Group Participants ... 4

2.1.2 Requirements Gathering Participants .. 5

2.3 Reading Guidelines for the non-technically inclined ... 5

3.0 Definitions .. 6

4.0 Statement ... 8

4.1 Statement Properties ... 8

4.1.1 ID .. 10

4.1.2 Actor ... 10

4.1.3 Verb .. 14

4.1 4 Object ... 16

4.1.5 Result ... 22

4.1.6 Context ... 23

4.1.7 Timestamp ... 26

4.1.8 Stored ... 26

4.1.9 Authority ... 27

4.1 10 Version ... 28

4.1.11 Attachments ... 29

4.1.12 Data Constraints .. 32

4.2 Retrieval of Statements ... 33

4.3 Voided .. 34

4.4 Signed Statements .. 35

5.0 Miscellaneous Types .. 36

5.1 Document .. 36

5.2 Language Map ... 36

5.3 Extensions ... 37

5.4 Identifier Metadata ... 38

6.0 Runtime Communication .. 39

6.1 Encoding .. 39

6.2 API Versioning ... 40

6.3 Concurrency .. 41

6.4 Security .. 42

6.4.1 Process of Each Scenario .. 43

6.4.2 OAuth Authorization Scope .. 44

7.0 Data Transfer (REST) .. 46

7.1 Error Codes ... 47

7.2 Statement API.. 48

7.2.1 PUT Statements ... 48

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-0) ii

7.2.2 POST Statements .. 48

7.2.3 GET Statements... 49

7.2.4 Voided Statements ... 51

7.3 Document APIs .. 52

7.4 State API .. 54

7.5 Activity Profile API ... 56

7.6 Agent Profile API ... 58

7.7 About Resource ... 60

7.8 Cross Origin Requests .. 61

7.9 Validation ... 62

7.10 HTTP HEAD .. 62

Appendices .. 63

Appendix A: Bookmarklet .. 63

Appendix B: Creating an "IE Mode" Request .. 66

Appendix C: Example statements ... 67

Appendix D: Example statement objects of different types ... 72

Appendix E: Example definitions for Activities of type "cmi.interaction" .. 74

Appendix F: Converting Statements to 1.0.0 ... 80

Appendix G: Example Signed Statement .. 83

Appendix H: Table of All Endpoints ... 88

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 1

THE EXPERIENCE API, VERSION 1.0.1

1.0 REVISION HISTORY OF THE SPECIFICATION

 0.8 (ProjectTin Can API Deliverable) to 0.9
(March 31, 2012)

Rustici Software, who delivered the Project Tin
Can API, made modifications to the API prior to
the April 2012 Kickoff Meeting. It was voted in
this meeting to move those changes into the
current spec and revision to 0.9.

0.90 to 0.95
(August 31, 2012)

"Core" Verbs and Activity types were removed
from the specification. References to these
Verbs in results, context, interactions, and
Activity definitions were also removed. It was
recommended that implementers prefer
community defined verbs to creating their own
Verbs.

• Verbs, Activity types, and extension keys
are now URIs.

• Restructured and added language around
some of the other implementation details
and scope.

• Changed from using a person-centric view
of Agents to a persona-centric view.

• Friend of a Friend (FOAF) Agent merging
requirement was removed.

• Agent Objects must now have exactly 1
uniquely identifying property, instead of at
least one.

0.95 to 1.0.0
(April 26, 2013)

Various refinements and clarifications including:

• Adding attachments
• Activity metadata is now stored as JSON

rather than XML
• Changes to voiding Statements
• Clarification and naming of the Document

APIs
• Changes to querying the Statement API
• Signed Statements

(May 21, 2013) • Corrected Table of Contents section
numbers

• Changed URL and URI to IRL and IRI
where appropriate

• Fixed minor editorial inconsistencies

1.0.0 to 1.0.1
(October 1, 2013)

• Clarified „Requirements‟ throughout
• Applied a more consistent formatting
• Added more examples in the appendices
• Corrected typos and minor editorial

inconsistencies

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 2

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 3

2.0 ROLE OF THE EXPERIENCE API

 The Experience API is a service that allows for statements of experience to be delivered to and stored
securely in a Learning Record Store (LRS). These statements of experience are typically learning
experiences, but the API can address statements of any kind of experience. The Experience API is
dependent on Activity Providers to create and track these learning experiences; this specification
provides a data model and associated components on how to accomplish these tasks.

Specifically, the Experience API provides:

• The structure and definition of Statement, State, Actor, Learner, Activity and Objects, which are
the means by which experiences are conveyed by an Activity Provider.

• Data Transfer methods for the storage and retrieval (but not validation) of these Objects to/from
a Learning Record Store. Note that the systems storing or retrieving records need not be Activity
Providers. LRSs may communicate with other LRSs, or reporting systems.

• Security methods allowing for the trusted exchange of information between the Learning Record
Store and trusted sources.

The Experience API is the first of many envisioned technologies that will enable a richer architecture
of online learning and training. Authentication services, querying services, visualization services, and
personal data services are some examples of additional technologies which the Experience API is
designed to support. While the implementation details of these services are not specified here, the
Experience API is designed with this larger architectural vision in mind.

ADL‟s Role in the Experience API 2.1

 The Advanced Distributed Learning (ADL) Initiative has taken on the roles of steward and facilitator in
the development of the Experience API. The Experience API is seen as one piece of the ADL Training
and Learning Architecture, which facilitates learning anytime and anywhere. ADL views the
Experience API as an evolved version of SCORM that can support similar use cases, but can also
support many of the use cases gathered by ADL and submitted by those involved in distributed
learning that SCORM could not enable.

Contributors 2.2

 My thanks to everyone who contributed to the Experience API project. Many of you have called into
the weekly meetings and helped to shape the specification into something that is useful for the entire
distributed learning community. Many of you assisted in releasing code samples, products, and
documentation to aid those who are creating and adopting the specification. I'd also like to thank all of
those who were involved in supplying useful, honest information about your organization's use of
SCORM and other learning best practices. Through the use-cases, shared experiences, and
knowledge you have shared, ADL and the community clearly identified the first step in creating the
Training and Learning Architecture--the Experience API. You are truly the community leaders on
which we depend to make our training and education the very best.

Kristy S. Murray, Ed.D.
Director, ADL Initiative
OSD, Training Readiness & Strategy (TRS)

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 4

Working Group Participants 2.2.1

Panjak Agrawal Next Software

Solutions
 David N. Johnson Clear Learning Systems

Dan Allen Litmos Eric Johnson Planning and Learning
Technologies, Inc.

Anthony Altieri American Red Cross Patrick Kedziora Kedzoh

Jonathan Archibald Brightwave John Kleeman Questionmark

Avron Barr Aldo Ventures, Inc. Dan Kuemmel Sentry Insurance

Steve Baumgartner Richard Lenz Organizational
Strategies, Inc.

Al Bejcek NetDimensions Fiona Leteney Feenix e-Learning

Marcus Birtwhistle ADL Robert Lowe NetDimensions

Megan Bowe Rustici Software Tim Martin Rustici Software

Jeremy Brockman Bill McDonald Boeing

Jennifer Cameron Sencia Corporate
Web Solutions

 Brian J. Miller Rustici Software

Rob Chadwick ADL Kris Miller edcetera Training

Rich Chetwynd Litmos Dave Mozealous Articulate

Ben Clark Rustici Software Mike Palmer OnPoint Digital

Tom Creighton ADL Jeff Place Questionmark

Ingo Dahn University Koblenz-
Landau

 Jonathan Poltrack ADL

Mark Davis Exambuilder Rick Raymer

Jhorlin De Armas Riptide Software Michael Roberts vTrainingRoom

Andrew Downes Epic Paul Roberts Questionmark

Russell Duhon SaLTBOX Kris Rockwell Hybrid Learning
Systems

David Ells Rustici Software Mike Rustici Rustici Software

Paul Esch Nine Set Chris Sawwa Meridian Knowledge
Solutions

Michael Flores Here Everything’s
Better

 Matteo
Scaramuccia

Steve Flowers XPConcept Ali Shahrazad SaLTBOX

Richard Fouchaux Ontario Human
Rights Commission

 Aaron Silvers ADL

Joe Gorup CourseAvenue Greg Tatka Menco Social Learning

Walt Grata ADL Stephen Tevorrow Problem Solutions, LLC

Jason Haag ADL Chad Udell Float Mobile Learning

Doug Hagy Twin Lakes
Consulting
Corporation

 Anton Valan Omnivera Learning
Solutions

Luke Hickey dominKnow Melanie VanHorn ADL

Thomas Ho Nick Washburn Riptide Software

Lang Holloman Andy Whitaker Rustici Software

Nikolaus Hruska ADL Lou Wolford ADL

Andy Johnson ADL

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 5

Requirements Gathering Participants 2.2.2

 In collection of requirements for the Experience API, many people and organizations provided
invaluable feedback to the Sharable Content Object Reference Model (SCORM

®
), distributed learning

efforts, and learning technology efforts in general. While not an exhaustive listing, the white papers
gathered in 2008 by the Learning Education and Training Standards Interoperability (LETSI) group,
the Rustici Software UserVoice website, one-on-one interviews and various blogs were important
sources from which requirements were gathered for the Experience API specification.

Reading Guidelines for the non-technically inclined 2.3

 This is a definitive document which describes how the Experience API is to be implemented across a
variety of systems. It is a technical document authored specifically for individuals and organizations
implementing this technology with the intent of such individuals developing interoperable tools,
systems and services that are independent of each other and interoperable with each other.

Whenever possible, the language and formatting used in this document is intended to be considerate
of non-technical readers because various tools, systems and services are based on the specification
set described below. For this reason, sections that provide a high-level overview of a given facet of
the Experience API are labeled description or rationale. Items in this document labeled as
requirements, details or examples are more technical.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 6

3.0 DEFINITIONS

Activity An Activity is a type of Object making up the “this” in I did “this”; it is something with which an Actor
interacted. It can be a unit of instruction, experience, or performance that is to be tracked in meaningful
combination with a Verb. Interpretation of Activity is broad, meaning that Activities can even be tangible
objects such as a chair (real or virtual). In the statement "Anna tried a cake recipe", the recipe constitutes
the Activity in terms of the xAPI statement. Other examples of activities include a book, an e-learning
course, a hike or a meeting.

Activity Provider (AP) The software object that is communicating with the LRS to record information about a learning
experience. May be similar to a SCORM package in that it is possible to bundle learning assets with the
software object that performs this communication, but an Activity Provider may also be separate from the
experience it is reporting about.

Actor An identity or persona of an individual or group tracked using Statements as doing an action (Verb) within
an Activity.

Authentication The concept of verifying the identity of a user or system. Authentication allows interactions between the
two “trusted” parties.

Authorization The affordance of permissions based on a user or system's role; the process of making one user or
system "trusted" by another.

Client Refers to any entity that may interact with an LRS. A Client can be an Activity Provider, reporting tool, an
LMS, or another LRS.

Community of Practice A group, usually connected by a common cause, role or purpose, which operates in a common modality.

Experience API (xAPI) The API defined in this document, the product of "Project Tin Can". A simple, lightweight way for any
permitted Actor to store and retrieve extensible learning records, learner and learning experience profiles,
regardless of platform.

Immutable Adjective used to describe things which cannot be changed. With some exceptions, Statements in the
xAPI are immutable. This ensures that when statements are shared between LRSs, multiple copies of the
statement remain the same.

Internationalized
Resource Identifier
(IRI)

A unique identifier which may be an IRL. In the xAPI, all IRIs should be a full absolute IRIs including a
scheme. Relative IRIs should not be used. IRLs should be defined within a domain controlled by the
person creating the IRL.

Internationalized
Resource Locator (IRL)

In the context of this document, an IRL is an IRI that when translated into a URI (per the IRI to URI rules),
is a URL. Some communities of practice simply use URL even if they use IRIs, which isn't as technically
correct within xAPI.

Inverse Functional
Identifier

An identifier which is unique to a particular persona or group. Used to identify Agents and Groups.

Learning Management
System (LMS)

"A software package used to administer one or more courses to one or more learners. An LMS is typically
a web-based system that allows learners to authenticate themselves, register for courses, complete
courses and take assessments” (Learning Systems Architecture Lab definition). In this document the term
will be used in the context of existing systems implementing learning standards.

Learning Record Store
(LRS)

A system that stores learning information. Prior to the xAPI most LRSs were Learning Management
Systems (LMSs); however this document uses the term LRS to be clear that a full LMS is not necessary
to implement the xAPI. The xAPI is dependent on an LRS to function.

MUST / SHOULD /
MAY

Three levels of obligation with regards to conformance to the xAPI specification. A system that fails to
implement a MUST (or a MUST NOT) requirement is non-conformant. Failing to meet a SHOULD
requirement is not a violation of conformity, but goes against best practices. MAY indicates an option, to
be decided by the developer with no consequences for conformity.

Profile A construct where information about the learner or activity is kept, typically in name/document pairs that

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 7

have meaning to an instructional system component.

Registration An instance of a learner experiencing a particular Activity.

Representational State
Transfer (REST)

An architecture for designing networked web Services. It relies on HTTP methods and uses current web
best practices.

Service A software component responsible for one or more aspects of the distributed learning process. An LMS
typically combines many services to design a complete learning experience.

Statement A simple construct consisting of <Actor (learner)> <verb> <object>, with <result>, in

<context> to track an aspect of a learning experience. A set of several Statements may be used to

track complete details about a learning experience.

Tin Can API (TCAPI) The previous name of the API defined in this document, often used in informal references to the
Experience API.

Verb Defines the action being done by the Actor within the Activity within a Statement.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 8

4.0 STATEMENT

 The Statement is the core of the xAPI. All learning events are stored as Statements. A Statement is
akin to a sentence of the form "I did this".

Statement Properties 4.1

Details The details of each property of a statement are described in the table below.

Property Type Description Required

id UUID UUID assigned by LRS if not set by the Activity
Provider.

Recommended

actor Object Who the Statement is about, as an Agent or Group
Object. Represents the "I" in "I Did This".

Required

verb Object Action of the Learner or Team Object. Represents
the "Did" in "I Did This".

Required

object Object Activity, Agent, or another Statement that is the
Object of the Statement. Represents the "This" in "I
Did This". Note that Objects which are provided as a
value for this field should include an "objectType"
field. If not specified, the Object is assumed to be an
Activity.

Required

result Object Result Object, further details representing a
measured outcome relevant to the specified Verb.

Optional

context Object Context that gives the Statement more meaning.
Examples: a team the Actor is working with, altitude
at which a scenario was attempted in a flight
simulator.

Optional

timestamp Date/Time Timestamp (Formatted according to ISO 8601) of
when the events described within this Statement
occurred. If not provided, LRS should set this to the
value of "stored" time.

Optional

stored Date/Time Timestamp (Formatted according to ISO 8601) of
when this Statement was recorded. Set by LRS.

Set by LRS

authority Object Agent who is asserting this Statement is true. Verified
by the LRS based on authentication, and set by LRS
if left blank.

Optional

version Version The Statement‟s associated xAPI version, formatted
according to Semantic Versioning 1.0.0

Not
Recommended

attachments Array of
attachment
Objects

Headers for attachments to the Statement. Optional

https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
http://semver.org/spec/v1.0.0.html

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 9

 Aside from (potential or required) assignments of properties during LRS processing ("id", "authority",
"stored", "timestamp", "version") Statements are immutable. Note that the content of Activities that are
referenced in Statements is not considered part of the Statement itself. So while the Statement is
immutable, the Activities referenced by that Statement are not. This means a deep serialization of a
Statement into JSON will change if the referenced Activities change (see the Statement API's "format"
parameter for details).

Requirements • A Statement MUST use each property no more than one time.
• A Statement MUST use “actor”, “verb”, and “object”.
• A Statement MAY use its properties in any order.

Example An example of the simplest possible Statement using all properties that MUST or SHOULD be used:

{
 "id": "12345678-1234-5678-1234-567812345678",
 "actor":{
 "mbox":"mailto:xapi@adlnet.gov"
 },
 "verb":{
 "id":"http://adlnet.gov/expapi/verbs/created",
 "display":{
 "en-US":"created"
 }
 },
 "object":{
 "id":"http://example.adlnet.gov/xapi/example/activity"
 }
}

 See Appendix C: Example Statements for more examples.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 10

 ID 4.1.1

Description A UUID (see RFC 4122 for requirements, and the UUID must be in a standard string form).

Requirements • Ids MUST be generated by the LRS if a Statement is received without an id.
• Ids SHOULD be generated by the Activity Provider.

 Actor 4.1.2

Description A mandatory Agent or Group Object.

 When the Actor ObjectType is Agent 4.1.2.1

Description An Agent (an individual) is a persona or system.

Details

• An Agent MUST be identified by one (1) of the four types of Inverse Functional Identifiers (see
4.1.2.3 Inverse Functional Identifier).

• An Agent MUST NOT include more than one (1) Inverse Functional Identifier.
• An Agent SHOULD NOT use Inverse Functional Identifiers that are also used as a Group identifier.

 The table below lists the properties of Agent Objects.

Property Type Description Required

objectType String "Agent". This property is optional except when
the Agent is used as a Statement's Object.

no

name String Full name of the Agent. no

see 4.1.2.3 Inverse Functional Identifier An Inverse Functional Identifier unique to the
Agent.

yes

http://www.ietf.org/rfc/rfc4122.txt

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 11

When the Actor ObjectType is Group 4.1.2.2

Description A Group represents a collection of Agents and can be used in most of the same situations an Agent
can be used. There are two types of Groups, anonymous and identified.

Details An Anonymous Group is used describe a cluster of people where there is no ready identifier for this
cluster, e.g. an ad hoc team.

The table below lists all properties of an Anonymous Group.

Property Type Description Required

objectType String "Group". yes

name String Name of the group. no

member Array of Agent Objects The members of this Group. yes

 An Identified Group is used to uniquely identify a cluster of Agents.

The table below lists all properties of an Identified Group.

Property Type Description Required

objectType String "Group". yes

name String Name of the group. no

member Array of Agent Objects The members of this Group. no

see 4.1.2.3 Inverse Functional Identifier An Inverse Functional Identifier unique to the Group. yes

Requirements • A system consuming Statements MUST consider each anonymous Group distinct even if it has an
identical set of members.

• A system consuming Statements MUST NOT assume that Agents in the 'member' property
comprise an exact list of Agents in a given anonymous or identified Group.

Requirements for

Anonymous

Groups

• An anonymous Group MUST include a 'member' property listing constituent Agents.
• An anonymous Group MUST NOT contain Group Objects in the 'member' property.
• An anonymous Group MUST NOT include any Inverse Functional Identifiers.

Requirements for

Identified

Groups

• An identified Group MUST include exactly one (1) Inverse Functional Identifier.
• An identified Group MUST NOT contain Group Objects in the 'member' property.
• An identified Group SHOULD NOT use Inverse Functional Identifiers that are also used as Agent

identifiers.
• An identified Group MAY include a 'member' property listing constituent Agents.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 12

Inverse Functional Identifier 4.1.2.3

Description An "Inverse Functional Identifier" is a value of an Agent or Identified Group that is guaranteed to only
ever refer to that Agent or Identified Group.

Rationale

Learning experiences become meaningless if they cannot be attributed to identifiable individuals
and/or groups. In an xAPI Statement this is accomplished with a set of Inverse Functional Identifiers
loosely inspired on the widely accepted FOAF principle (see: Friend Of A Friend).

Details The table below lists all possible Inverse Functional Identifier properties:

Property Type Description

mbox mailto IRI The required format is "mailto:email address".

Only email addresses that have only ever been and will ever be
assigned to this Agent, but no others, should be used for this
property and mbox_sha1sum.

mbox_sha1sum

String

The SHA1 hash of a mailto IRI (i.e. the value of an mbox property).
An LRS MAY include Agents with a matching hash when a request
is based on an mbox.

openID URI An openID that uniquely identifies the Agent.

account Object A user account on an existing system e.g. an LMS or intranet.

http://xmlns.com/foaf/spec/#term_Agent

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 13

Account Object 4.1.2.4

Description A user account on an existing system, such as a private system (LMS or intranet) or a public system
(social networking site).

Details • If the system that provides the account Object uses OpenID, the Activity Provider SHOULD use
the OpenID property instead of an account Object.

• If the Activity Provider is concerned about revealing personally identifiable information about an
Agent or Group, it SHOULD use an opaque account name (for example an account number) to
identify all statements about a person while maintaining anonymity.

The table below lists all properties of Account Objects.

Property Type Description

homePage IRL The canonical home page for the system the account is on. This is based on
FOAF's accountServiceHomePage.

name String The unique id or name used to log in to this account. This is based on
FOAF's accountName.

Example This example shows an Agent identified by an opaque account:

{
 "objectType": "Agent",
 "account": {
 "homePage": "http://www.example.com",
 "name": "1625378"
 }
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 14

Verb 4.1.3

Description The Verb defines the action between Actor and Activity.

Rationale

The Verb in an xAPI Statement describes the action performed during the learning experience. The
xAPI does not specify any particular Verbs. (With one exception, namely the reserved Verb
'http://adlnet.gov/expapi/verbs/voided'). Instead, it defines how to create Verbs so that communities of
practice can establish Verbs meaningful to their members and make them available for use by
anyone. A predefined list of Verbs would be limited by definition and might not be able to effectively
capture all possible future learning experiences.

Details Verbs appear in Statements as Objects consisting of an IRI and a set of display names corresponding
to the multiple languages or dialects which provide human–readable meanings of the Verb.

The table below lists all properties of the Verb Object.

Property Type Description

Id IRI Corresponds to a Verb definition. Each Verb definition corresponds
to the meaning of a Verb, not the word. The IRI should be human-
readable and imply the Verb meaning.

display Language Map The human readable representation of the Verb in one or more
languages. This does not have any impact on the meaning of the
Statement, but serves to give a human-readable display of the
meaning already determined by the chosen Verb.

Requirements • The display property MUST be used to illustrate the meaning which is already determined by the
Verb IRI.

• A system reading a Statement MUST use the Verb IRI to infer meaning.
• The display property MUST NOT be used to alter the meaning of a Verb.
• A system reading a Statement MUST NOT use the display property to infer any meaning from the

Statement.
• A system reading a Statement MUST NOT use the display property for any purpose other than

display to a human. Using the display property for aggregation or categorization of Statements is
an example of violating this requirement.

• The display property SHOULD be used by all Statements.
• The IRI contained in the id SHOULD be human-readable and imply the Verb meaning.

Example

{
 "verb" : {
 "id":"http://www.adlnet.gov/XAPIprofile/ran(travelled_a_distance)",
 "display":{
 "en-US":"ran",
 "es" : "corrió"
 }
 }
}

 The Verb in the example above is included for illustrative purposes only. This is not intended to imply
that a Verb with this meaning has been defined with this id. This applies to all example Verbs given in
this specification document, with the exception of the reserved Verb
'http://adlnet.gov/expapi/verbs/voided'.

http://adlnet.gov/expapi/verbs/voided
http://adlnet.gov/expapi/verbs/voided

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 15

Use in Language and Semantics of Verbs 4.1.3.1

Details

Semantics The IRI represented by the Verb id identifies the particular semantics of a word, not the word itself.

For example, the English word "fired" could mean different things depending on context, such as "fired
a weapon", "fired a kiln", or "fired an employee". In this case, an IRI MUST identify one of these
specific meanings, not the word "fired".

The display property has some flexibility in tense. While the Verb IRIs are expected to remain in the
past tense, if conjugating verbs to another tense (using the same Verb) within the Activity makes
sense, it is allowed.

Language A Verb in the Experience API is an IRI, and denotes a specific meaning not tied to any particular
language.

For example, a particular Verb IRI such as http://example.org/firearms#fire might denote the

action of firing a gun, or the Verb IRI http://example.com/خواندن/فعل might denote the action of

reading a book.

Use in Communities of Practice 4.1.3.2

Description Communities of practice will, at some point in time, need to establish new Verbs to meet the needs of
their constituency.

It is expected that xAPI generates profiles, lists, and repositories that become centered on Verb
vocabularies. ADL is one such organization that is creating a companion document containing Verbs
for xAPI.

In fulfillment of the requirements below, a collection of IRIs of recommended Verbs exists. There are
times when Activity Providers may wish to use a different Verb for the same meaning.

Requirements for

Communities of

Practice

• Anyone establishing a new Verb MUST own the IRI, or MUST have permission from the owner to
use it to denote an xAPI verb.

• Anyone establishing a new Verb SHOULD make a human-readable description of the intended
usage of the verb accessible at the IRI.

Requirements for

Activity

Providers

• Activity Providers SHOULD use a corresponding existing Verb whenever possible.
• Activity Providers MAY create and use a Verb if no suitable Verb exists.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 16

Object 4.1.4

Description The Object of a Statement can be an Activity, Agent/Group, Sub-Statement, or Statement Reference.
It is the "this" part of the Statement, i.e., "I did this".

 Some examples:

• The object is an Activity: "Jeff wrote an essay about hiking."
• The Object is an Agent: "Nellie interviewed Jeff."
• The Object is Sub-Statement or Statement Reference (different implementations, but similar when

human-read): "Nellie commented on 'Jeff wrote an essay about hiking.' "

Details Objects which are provided as a value for this field SHOULD include an "objectType" field. If not
specified, the objectType is assumed to be "Activity". Other valid values are: Agent, Group, Sub-
Statement or StatementRef. The properties of an Object change according to the objectType.

When the ObjectType is Activity 4.1.4.1

Details A Statement may represent an Activity as the Object of the Statement.

 The following table lists the Object properties in this case.

Property Type Description

objectType String MUST be "Activity" when present. Optional in all cases.

id IRI An identifier for a single unique Activity. Required.

definition Object Optional Metadata, See below

 If it were possible to use the same id for two different Activities, the validity of Statements about these
Activities could be questioned. This means an LRS may never treat (references to) the same Activity
id as belonging to two different Activities, even if it thinks this was intended. Namely, when a conflict
with another system occurs, it‟s not possible to determine the intentions.

 The table below lists the properties of the Activity Definition Object:

Property Type Use Description

name Language Map Recommended The human readable/visual name of the Activity.

description Language Map Recommended A description of the Activity.

type IRL Recommended The type of Activity.

moreInfo IL Optional SHOULD resolve to a document human-readable
information about the Activity, which MAY include a
way to 'launch' the Activity.

Interaction properties, See: Interaction Activities

extensions Object Optional A map of other properties as needed (see: Extensions)

Note IRI fragments (sometimes called relative IRLs) are not valid IRIs. As with Verbs, it is recommended
that Activity Providers look for and use established, widely adopted, Activity types.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 17

Activity ID

Requirements

• An Activity id MUST be unique.
• An Activity id MUST always reference the same Activity.
• An Activity id SHOULD use a domain that the creator is authorized to use for this purpose.
• An Activity id SHOULD be created according to a scheme that makes sure all Activity ids within

that domain remain unique.
• An Activity id MAY point to metadata or the IRL for the Activity.

LRS

Requirements

• An LRS MUST ignore any information which indicates two authors or organizations may have
used the same Activity id.

• An LRS MUST NOT treat references to the same id as references to different Activities.
• Upon receiving a Statement with an Activity Definition that differs from the one stored, an LRS

SHOULD decide whether it considers the Activity Provider to have the authority to change the
definition and SHOULD update the stored Activity Definition accordingly if that decision is positive.

• An LRS MAY accept small corrections to the Activity‟s definition. For example, it would be okay
for an LRS to accept spelling fixes, but it may not accept changes to correct responses.

Activity Provider

Requirements

• An Activity Provider MUST ensure that Activity ids are not re-used across multiple Activities.
• An Activity Provider MUST only generate states or Statements against a certain Activity id that are

compatible and consistent with states or Statements previously stored against the same id.
• An Activity Provider MUST NOT allow new versions (i.e., revisions or other platforms) of the

Activity to break compatibility.

Metadata

Requirements

• If an Activity IRI is an IRL, an LRS SHOULD attempt to GET that IRL, and include in HTTP
headers: "Accept: application/json, /". This SHOULD be done as soon as practical after the LRS
first encounters the Activity id.

• Upon loading JSON which is a valid Activity Definition from an IRL used as an Activity id, an LRS
SHOULD incorporate the loaded definition into its internal definition for that Activity, while
preserving names or definitions not included in the loaded definition.

• An Activity with an IRL identifier MAY host metadata using the Activity Definition JSON format
which is used in Statements, with a Content-Type of "application/json"

• Upon loading any document from which the LRS can parse an Activity Definition from an IRL used
as an Activity id, an LRS MAY consider this definition when determining its internal representation
of that Activity's definition.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 18

Interaction Activities

Rationale Traditional e-learning has included structures for interactions or assessments. As a way to allow these
practices and structures to extend Experience API's utility, this specification includes built-in
definitions for interactions, which borrows from the SCORM 2004 4th Edition Data Model. These
definitions are intended to provide a simple and familiar utility for recording interaction data. These
definitions are simple to use, and consequently limited. It is expected that communities of practice
requiring richer interactions definitions will do so through the use of extensions to an Activity's type
and definition.

Details The table below lists the properties for Interaction Activities.

Property Type Description

interactionType String As in "cmi.interactions.n.type" as defined in the SCORM
2004 4th Edition Run-Time Environment.

correctResponsesPattern An array of strings Corresponds to
"cmi.interactions.n.correct_responses.n.pattern" as
defined in the SCORM 2004 4th Edition Run-Time
Environment, where the final n is the index of the array.

choices | scale | source |
target | steps

Array of interaction
components

Specific to the given interactionType (see below).

Requirements • Interaction Activities MUST have a valid interactionType.
• Interaction Activities SHOULD have the Activity type

"http://adlnet.gov/expapi/activities/cmi.interaction".
• An LRS, upon consuming a valid interactionType, MAY validate the remaining properties as

specified in the table below and MAY return HTTP 400 "Bad Request" if the remaining properties
are not valid for the Interaction Activity.

http://adlnet.gov/expapi/activities/cmi.interaction

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 19

Interaction Components

Details Interaction components are defined as follows:

Property Type Description

id String A value such a used in practice for "cmi.interactions.n.id" as defined in the
SCORM 2004 4th Edition Run-Time Environment

description Language
Map

A description of the interaction component (for example, the text for a given
choice in a multiple-choice interaction).

 The following table shows the supported lists of CMI interaction components for an interaction activity
with the given interactionType.

interactionType supported component list(s)

choice, sequencing choices

likert scale

matching source, target

Performance steps

true-false, fill-in, numeric, other [no component lists defined]

Requirements • Within an array of all interaction components, all values MUST be distinct.
• An interaction component‟s id value SHOULD not have whitespace.

 See Appendix E for examples of Activity definitions for each of the cmi.interaction types.

When the "Object" is an Agent or a Group 4.1.4.2

Requirements

• Statements that specify an Agent or Group as an Object MUST specify an 'objectType' property.

See Section 4.1.2 Actor for details regarding Agents.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 20

When the "Object" is a Statement 4.1.4.3

Rationale

There are two possibilities for using a Statement as an Object. First, an Object can take on the form of
a Statement that already exists by using a Statement Reference. A common use case for Statement
References is grading or commenting on an experience that could be tracked as an independent
event. The special case of voiding a Statement would also use a Statement Reference. Second, an
Object can be a brand new Statement by using a Sub-Statement. A common use case for Sub-
Statements would be any experience that would be misleading as its own Statement. Each type is
defined below.

Statement References

Description A Statement Reference is a pointer to another pre-existing Statement.

Requirements • A Statement Reference MUST specify an "objectType" property with the value "StatementRef".
• A Statement Reference MUST set the "id" property to the UUID of a Statement.

 The table below lists all properties of a Statement Reference Object:

Property Type Description

objectType String In this case, MUST be "StatementRef".

id UUID The UUID of a Statement.

Example

Assuming that some Statement has already been stored with the ID 8f87ccde-bb56-4c2e-ab83-
44982ef22df0, the following example shows how a comment could be issued on the original
Statement, using a new Statement:

{
 "actor" : {
 "objectType": "Agent",
 "mbox":"mailto:test@example.com"
 },
 "verb" : {
 "id":"http://example.com/commented",
 "display": {
 "en-US":"commented"
 }
 },
 "object" : {
 "objectType":"StatementRef",
 "id":"8f87ccde-bb56-4c2e-ab83-44982ef22df0"
 },
 "result" : {
 "response" : "Wow, nice work!"
 }
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 21

Sub-Statements

Description A Sub-Statement is a new Statement included as part of a parent Statement.

Requirements

• A Sub-Statement MUST specify an "objectType" property with the value "SubStatement".
• A Sub-Statement MUST be validated as a Statement in addition to other Sub-Statement

requirements.
• A Sub-Statement MUST NOT have the "id", "stored", "version" or "authority" properties.
• A Sub-Statement MUST NOT contain a Sub-Statement of their own, i.e., cannot be nested.

Example

One interesting use of Sub-Statements is in creating Statements of intention. For example, using Sub-
Statements we can create statements of the form "<I> <planned> (<I> <did> <this>)" to indicate

that we've planned to take some action. The concrete example that follows logically states that
"I planned to visit 'Some Awesome Website'".

{
 "actor": {
 "objectType": "Agent",
 "mbox":"mailto:test@example.com"
 },
 "verb" : {
 "id":"http://example.com/planned",
 "display":{
 "en-US":"planned"
 }
 },
 "object": {
 "objectType": "SubStatement",
 "actor" : {
 "objectType": "Agent",
 "mbox":"mailto:test@example.com"
 },
 "verb" : {
 "id":"http://example.com/visited",
 "display":{
 "en-US":"will visit"
 }
 },
 "object": {
 "id":"http://example.com/website",
 "definition": {
 "name" : {
 "en-US":"Some Awesome Website"
 }
 }
 }
 }

}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 22

Result 4.1.5

Description An optional field that represents a measured outcome related to the Statement in which it is included.

Details

The following table contains the properties of the Results Object.

Property Type Description

score Object The score of the agent in relation to the success or quality of
the experience. See: Score

success Boolean Indicates whether or not the attempt on the Activity was
successful.

completion Boolean Indicates whether or not the Activity was completed.

response String A response appropriately formatted for the given Activity.

duration Formatted according to
ISO 8601 with a
precision of 0.01
seconds

Period of time over which the Statement occurred.

extensions Object A map of other properties as needed. See: Extensions

Score 4.1.5.1

Description An optional numeric field that represents the outcome of a graded Activity achieved by an Agent.

Details The table below defines the Score Object.

Property Type Description

scaled Decimal number between -1 and 1, inclusive Cf. 'cmi.score.scaled' in SCORM 2004
4th Edition

raw Decimal number between min and max (if present,
otherwise unrestricted), inclusive

Cf. 'cmi.score.raw'

min Decimal number less than max (if present) Cf. 'cmi.score.min'

max Decimal number greater than min (if present) Cf. 'cmi.score.max'

Requirements • The Score Object SHOULD include 'scaled' if a logical percent based score is known.
• The Score Object SHOULD NOT be used for scores relating to progress or completion. Consider

using an extension from an extension profile instead.

https://en.wikipedia.org/wiki/ISO_8601#Durations

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 23

Context 4.1.6

Description An optional field that provides a place to add contextual information to a Statement. All properties are
optional.

Rationale

The "context" field provides a place to add some contextual information to a Statement. It can store
information such as the instructor for an experience, if this experience happened as part of a team
Activity, or how an experience fits into some broader activity.

Details The following table contains the properties of the Context Object.

Property Type Description

registration UUID The registration that the Statement is associated with.

instructor Agent (may be a group) Instructor that the Statement relates to, if not included as the
Actor of the statement.

team Group Team that this Statement relates to, if not included as the
Actor of the Statement.

contextActivities contextActivities Object

A map of the types of learning activity context that this
Statement is related to. Valid context types are: "parent",
"grouping", "category" and "other".

revision String Revision of the learning activity associated with this
Statement. Format is free.

platform String Platform used in the experience of this learning activity.

language String (as defined in
RFC 5646)

Code representing the language in which the experience
being recorded in this Statement (mainly) occurred in, if
applicable and known.

statement

Statement Reference Another Statement which should be considered as context
for this Statement.

extensions

Object

A map of any other domain-specific context relevant to this
Statement. For example, in a flight simulator altitude,
airspeed, wind, attitude, GPS coordinates might all be
relevant (See Extensions)

Requirements • The revision property MUST only be used if the Statement's Object is an Activity.
• The platform property MUST only be used if the Statement's Object is an Activity.
• The language property MUST NOT be used if not applicable or unknown.
• The revision property SHOULD be used to track fixes of minor issues (like a spelling error).
• The revision property SHOULD NOT be used if there is a major change in learning objectives,

pedagogy, or assets of an Activity. (Use a new Activity id instead).

Note Revision has no behavioral implications within the scope of xAPI. It is simply stored, so that it is
available for reporting tools.

http://tools.ietf.org/html/rfc5646

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 24

Registration Property 4.1.6.1

Description An instance of a learner undertaking a particular learning activity.

Details When an LRS is an integral part of an LMS, the LMS likely supports the concept of registration. The
Experience API applies the concept of registration more broadly. A registration could be considered to
be an attempt, a session, or could span multiple Activities. There is no expectation that completing an
Activity ends a registration. Nor is a registration necessarily confined to a single Agent.

ContextActivities Property 4.1.6.2

Description A map of the types of learning activity context that this Statement is related to.

Rationale

Many Statements do not just involve one Object Activity that is the focus, but relate to other
contextually relevant Activities. "Context activities" allow for these related Activities to be represented
in a structured manner.

Details

There are four valid context types. All, any or none of these MAY be used in a given Statement:

1. Parent: an Activity with a direct relation to the activity which is the Object of the Statement. In
almost all cases there is only one sensible parent or none, not multiple. For example: a
Statement about a quiz question would have the quiz as its parent Activity.

2. Grouping: an Activity with an indirect relation to the activity which is the Object of the
Statement. For example: a course that is part of a qualification. The course has several
classes. The course relates to a class as the parent, the qualification relates to the class as
the grouping.

3. Category: an Activity used to categorize the Statement. "Tags" would be a synonym.
Category SHOULD be used to indicate a "profile" of xAPI behaviors, as well as other
categorizations. For example: Anna attempts a biology exam, and the Statement is tracked
using the CMI-5 profile. The Statement's Activity refers to the exam, and the category is the
CMI-5 profile.

4. Other: a context Activity that doesn't fit one of the other fields. For example: Anna studies a
textbook for a biology exam. The Statement's Activity refers to the textbook, and the exam is
a context Activity of type "other".

Single Activity Objects are allowed as values so that 0.95 Statements will be compatible with 1.0.0.

Note The values in this section are not for expressing all the relationships the Statement Object has.
Instead, they are for expressing relationships appropriate for the specific Statement (though the
nature of the Object will often be important in determining that). For instance, it is appropriate in a
Statement about a test to include the course the test is part of as parent, but not to include every
possible degree program the course could be part of in the grouping value.

Requirements

• Every key in the contextActivities Object MUST be one of parent, grouping, category, or other.
• Every value in the contextActivities Object MUST be either a single Activity object or an array of

Activity objects.
• The LRS MUST return every value in the contextActivities Object as an array, even if it arrived as

a single Activity object;
• The LRS MUST return single Activity Objects as an array of length one containing the same

Activity.
• The Client SHOULD ensure that every value in the contextActivitiesOobject is an array of Activity

objects instead of a single Activity object.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 25

Example

Consider the following hierarchical structure: "Questions 1 to 6" are part of "Test 1" which in turn
belongs to the course "Algebra 1". The six questions are registered as part of the test by declaring
"Test 1" as their parent. Also they are grouped with other Statements about "Algebra 1" to fully mirror
the hierarchy. This is particularly useful when the Object of the Statement is an Agent, not an Activity.
"Andrew mentored Ben with context Algebra 1".

{
 "parent" : [{
 "id" : "http://example.adlnet.gov/xapi/example/test 1"
 }],
 "grouping" : [{
 "id" : "http://example.adlnet.gov/xapi/example/Algebra1"
 }]
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 26

Timestamp 4.1.7

Description The time at which the experience occurred.

Details

A timestamp in a Statement can differ from Stored (the time at which the statement is stored).
Namely, there can be delays between the occurrence of the experience and the reception of the
corresponding Statement by the LRS.

Where the experience occurs over a period of time, the timestamp can represent the start, end or any
point of time during the experience. It is expected that communities of practice will define an
appropriate point to record the timestamp for different experiences. For example when recording the
experience of eating at a restaurant, it might be most appropriate to record the timestamp of the start
of the experience; when recording the experience of completing a qualification, it might be most
appropriate to record the timestamp of the end of the experience. These examples are for illustrative
purposes only and are not meant to be prescriptive.

Requirements

• A timestamp MUST be formatted according to ISO 8601.
• A timestamp SHOULD include the time zone.
• A timestamp SHOULD be the current or a past time when it is outside of a Sub-Statement.
• A timestamp MAY be truncated or rounded to a precision of at least 3 decimal digits for seconds

(millisecond precision MUST be preserved).
• A timestamp MAY be a moment in the future, to denote a deadline for planned learning, provided

it is included inside a Sub-Statement.

Stored 4.1.8

Description The time at which a Statement is stored by the LRS.

The stored property is the literal time the Statement was stored. Use Timestamp to track a time at
which the Statement was generated.

Requirements

• The stored property MUST be formatted according to ISO 8601.
• The stored property SHOULD include the time zone.
• The stored property SHOULD be the current or a past time.
• The stored property MAY be truncated or rounded to a precision of at least 3 decimal digits for

seconds (millisecond precision MUST be preserved).

https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 27

Authority 4.1.9

Description The authority property provides information about whom or what has asserted that this Statement is
true.

Details The asserting authority represents the authenticating user of some system or application.

Requirements • Authority MUST be an Agent, except in 3-legged OAuth, where it must be a Group with two
Agents. The two Agents represent an application and user together.

• The LRS MUST include the user as an Agent as the entire authority if the user connects directly
(using HTTP Basic Authentication) or is included as part of a Group.

• The LRS MUST ensure that all Statements stored have an authority.
• The LRS SHOULD overwrite the authority on all stored received Statements, based on the

credentials used to send those Statements.
• The LRS MAY leave the submitted authority unchanged but SHOULD do so only where a strong

trust relationship has been established, and with extreme caution.
• The LRS MAY identify the user with any of the legal identifying properties if a user connects

directly (using HTTP Basic Authentication) or a part of a 3-legged OAuth.

OAuth Credentials as Authority

Description This is a workflow for use of OAuth. 2-legged and 3-legged OAuth are both supported.

Details This workflow assumes a Statement is stored using a validated OAuth connection and the LRS
creates or modifies the authority property of the Statement.

In a 3-legged OAuth workflow, authentication involves both and OAuth consumer and a user of the
OAuth service provider. For instance, requests made by an authorized Twitter plug-in on their
Facebook account will include credentials that are specific not only to Twitter as a Client application,
or them as a user, but the uniqe combination of both.

Requirements • The authority MUST contain an Agent Object that represents the OAuth consumer, either by itself,
or as part of a group in the case of 3-legged OAuth.

• The Agent representing the OAuth consumer MUST be identified by account.
• The Agent representing the OAuth consumer MUST use the consumer key as the “account name”

field.
• If the Agent representing the OAuth consumer is a registered application, the token request

endpoint MUST be used as the account homePage.
• If the Agent representing the OAuth consumer is not a registered application, the temporary

credentials endpoint MUST be used as the account homePage.
• An LRS MUST NOT trust the application portion of the authority in the event the account name is

from the same source as the unregistered application. (Multiple unregistered applications could
choose the same consumer key. As a result, there is no consistent way to verify this combination
of temporary credentials and the account name.)

• Each unregistered consumer SHOULD use a unique consumer key.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 28

Example The pairing of an OAuth consumer and a user.

"authority": {
 "objectType" : "Group",
 "member": [
 {
 "account": {
 "homePage":"http://example.com/xAPI/OAuth/Token",
 "name":"oauth_consumer_x75db"
 }
 },
 {
 "mbox":"mailto:bob@example.com"
 }
]
}

Version 4.1.10

Description Version information in Statements helps systems that process data from an LRS get their bearings.
Since the Statement data model is guaranteed consistent through all 1.0.x versions, in order to
support data flow among such LRSs the LRS is given some flexibility on Statement versions that are
accepted.

Requirements • Version MUST be formatted as laid out for the API version header in API Versioning.

LRS

Requirements

• An LRS MUST accept all Statements where their version starts with "1.0." if they otherwise
validate.

• An LRS MUST reject all Statements with a version specified that does not start with "1.0."
• Statements returned by an LRS MUST retain the version they are accepted with. If they lack a

version, the version MUST be set to 1.0.0

Client

Requirements

• If Clients set the Statement version, they MUST set it to 1.0.0
• Clients SHOULD NOT set the Statement version.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 29

Attachments 4.1.11

Description A digital artifact providing evidence of a learning experience.

Rationale In some cases an attachment may logically be an important part of a learning record. Think of a
simulated communication with ATC, an essay, a video, etc. Another example of such an attachment is
(the image of) a certificate that was granted as a result of an experience. It is useful to have a way to
store these attachments in and retrieve them from an LRS. In the case of wanting to include an
attachment(s) for a Sub-Statement, we strongly recommend including the attachment(s) in the
Statement attachment field and including the payloads as you would normally for a Statement.

Details

The table below lists all properties of the Attachment Object.

Property Type Description Required

usageType

IRI

Identifies the usage of this attachment. For example:
one expected use case for attachments is to include a
"completion certificate". A type IRI corresponding to
this usage should be coined, and used with completion
certificate attachments.

yes

display Language Map Display name (title) of this attachment. yes

description Language Map A description of the attachment. no

contentType Internet Media
Type

The content type of the attachment. yes

length integer The length of the attachment data in octets. yes

sha2 String The SHA-2 (SHA-256, SHA-384, SHA-512) hash of the
attachment data. SHA-224 SHOULD not be used: a
minimum key size of 256 bits is recommended.

yes

fileUrl IRL An IRL at which the attachment data may be retrieved,
or from which it used to be retrievable.

no

Procedure for
the exchange of

attachments

1. A Statement including an attachment is construed according to the Transmission Format
described below.

2. The Statement is sent to the receiving system using a content-Type of "multipart/mixed". The
attachments are placed at the end of such transmissions.

3. The receiving system decides whether to accept or reject the Statement based on the information
in the first part.

4. If it accepts the attachment, it can match the raw data of an attachment with the attachment
header in a Statement by comparing the SHA-2 of the raw data to the SHA-2 declared in the
header. It MUST not do so in any other way.

Requirements for

Attachment

Statement

Batches

A Statement batch, Statement results, or a single Statement that includes attachments MUST satisfy
one of the following criteria:

• It MUST be of type "application/json" and include a fileUrl for every attachment EXCEPT for
Statement results when the attachment filter is false.

• It MUST conform to the definition of multipart/mixed in RFC 1341 and:
o The first part of the multipart document MUST contain the Statements themselves, with

type "application/json".
o Each additional part contains the raw data for an attachment and forms a logical part of

the Statement. This capability will be available when issuing PUT or POST against the
Statement resource.

o MUST include an X-Experience-API-Hash field in each part's header after the first

https://www.ietf.org/rfc/rfc2046.txt?number=2046
https://www.ietf.org/rfc/rfc2046.txt?number=2046

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 30

(Statements) part.
o This field MUST be set to match the "sha2" property of the attachment declaration

corresponding to the attachment included in this part.
o MUST include a Content-Transfer-Encoding field with a value of "binary" in each part's

header after the first (Statements) part.
o SHOULD only include one copy of an attachment's data when the same attachment is

used in multiple Statements that are sent together.
o SHOULD include a Content-type field in each part's header, for the first part this MUST be

"application/json".

LRS

Requirements

• An LRS MUST include attachments in the Transmission Format described above when requested
by the Client (see Section 7.2 "Statement API").

• An LRS MUST NOT pull Statements from another LRS without requesting attachments.
• An LRS MUST NOT push Statements into another LRS without including attachment data

received, if any, for those attachments.
• When receiving a PUT or POST with a document type of "application/json", an LRS MUST accept

batches of Statements which contain no attachment Objects.
• When receiving a PUT or POST with a document type of "application/json", an LRS MUST accept

batches of Statements which contain only attachment Objects with a populated fileURL.
• When receiving a PUT or POST with a document type of "multipart/mixed”, an LRS MUST accept

batches of Statements that contain attachments in the Transmission Format described above.
• When receiving a PUT or POST with a document type of "multipart/mixed”, an LRS MUST reject

batches of Statements having attachments that neither contain a fileUrl nor match a received
attachment part based on their hash.

• When receiving a PUT or POST with a document type of "multipart/mixed”, an LRS SHOULD assume
a Content-Transfer-Encoding of binary for attachment parts.

• An LRS MAY reject (batches of) Statements that are larger than the LRS is configured to allow.

Note There is no requirement that Statement batches using the mime/multipart format contain attachments.

Client

Requirements

• The Client MAY send Statements with attachments as described above.
• The Client MAY send multiple Statements where some or all have attachments if using "POST".
• The Client MAY send batches of type "application/json" where every attachment Object has a

fileUrl, ignoring all requirements based on the "multipart/mixed" format.

Example

Below is an example of a very simple Statement with an attachment. Please note the following:

• The boundary in the sample was chosen to demonstrate valid character classes;
• The selected boundary does not appear in any of the parts;
• For readability the sample attachment is text/plain. Even if it had been a 'binary' type like

'image/jpeg' no encoding would be done, the raw octets would be included;
• Per RFC 1341, the boundary is followed by -- followed by the boundary string declared in the

header.

Don't forget the <CRLF> when building or parsing these messages.

Headers:
Content-Type: multipart/mixed; boundary=abcABC0123'()+_,-./:=?

X-Experience-API-Version:1.0.0

Content:

--abcABC0123'()+_,-./:=?
Content-Type:application/json

{
 "actor": {
 "mbox": "mailto:sample.agent@example.com",

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 31

 "name": "Sample Agent",
 "objectType": "Agent"
 },
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/answered",
 "display": {
 "en-US": "answered"
 }
 },
 "object": {
 "id": "http://www.example.com/tincan/activities/multipart",
 "objectType": "Activity",
 "definition": {
 "name": {
 "en-US": "Multi Part Activity"
 },
 "description": {
 "en-US": "Multi Part Activity Description"
 }
 }
 },
 "attachments": [
 {
 "usageType": "http://example.com/attachment-usage/test",
 "display": { "en-US": "A test attachment" },
 "description": { "en-US": "A test attachment (description)" },
 "contentType": "text/plain; charset=ascii",
 "length": 27,
 "sha2":
"495395e777cd98da653df9615d09c0fd6bb2f8d4788394cd53c56a3bfdcd848a"
 }
]
}

--abcABC0123'()+_,-./:=?
Content-Type:text/plain
Content-Transfer-Encoding:binary
X-Experience-API-
Hash:495395e777cd98da653df9615d09c0fd6bb2f8d4788394cd53c56a3bfdcd848a

here is a simple attachment
--abcABC0123'()+_,-./:=?--

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 32

Data Constraints 4.1.12

Details All the properties used in Statements are restricted to certain types, and those types constrain the
behavior of systems processing Statements. For clarity, certain key requirements are documented
here, emphasizing where compliant systems have a responsibility to act in certain ways.

Client

Requirements

The following requirements reiterate especially important requirements already included elsewhere, to
emphasize, clarify, and provide implementation guidance. Complete IRI validation is extremely
difficult, so much of the burden for ensuring data portability is on the Client.

• Values requiring IRIs MUST be sent with valid IRIs.
• Keys of language maps MUST be sent with valid RFC 5646 language tags, for similar reasons.
• A library SHOULD be used to construct IRIs, as opposed to string concatenation.

LRS

Requirements

• The LRS MUST reject Statements
o with any null values (except inside extensions).
o with strings where numbers are required, even if those strings contain numbers.
o with strings where booleans are required, even if those strings contain booleans.
o with any non-format-following key or value, including the empty string, where a string with

a particular format (such as mailto IRI, UUID, or IRI) is required.
o where the case of a key does not match the case specified in the standard.
o where the case of a value restricted to enumerated values does not match an

enumerated value given in the standard exactly.
• The LRS MUST reject Statements containing IRL, IRI, or IRI values without a scheme.
• The LRS MUST at least validate that the sequence of token lengths for language map keys

matches the RFC 5646 standard.
• The LRS MUST process and store numbers with at least the precision of IEEE 754 32-bit floating

point numbers.
• The LRS MUST validate parameter values to the same standards required for values of the same

types in Statements. Note: string parameter values are not quoted as they are in JSON.
• The LRS MAY use best-effort validation for IRL, IRI, and IRI formats to satisfy the non-format-

following rejection requirement.
• The LRS MAY use best-effort validation for language map keys to satisfy the non-format-following

rejection requirement.

http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 33

Retrieval of Statements 4.2

Description A collection of Statements can be retrieved by performing a query on the "statements" endpoint, see
Section 7.2 “Statement API” for details.

Details The following table shows the data structure for the results of queries on the Statement API.

Property Type Description

statements

Array of
Statements

List of Statements. If the list returned has been limited (due to pagination),
and there are more results, they will be located at the "statements" property
within the container located at the IRL provided by the "more" element of this
Statement result Object.

more

IRL

Relative IRL that may be used to fetch more results, including the full path
and optionally a query string but excluding scheme, host, and port. Empty
string if there are no more results to fetch.

This IRL must be usable for at least 24 hours after it is returned by the LRS.
In order to avoid the need to store these IRLs and associated query data, an
LRS may include all necessary information within the IRL to continue the
query, but should avoid generating extremely long IRLs. The consumer
should not attempt to interpret any meaning from the IRL returned.

Requirements • The IRL retrieved from the more property MUST be usable for at least 24 hours after it is returned
by the LRS.

• An LRS MAY include all necessary information within the more property IRL to continue the query
to avoid the need to store IRLs and associated query data.

• An LRS SHOULD NOT generate extremely long IRLs within the more property.
• The consumer SHOULD NOT attempt to interpret any meaning from the IRL returned from the

more property.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 34

Voided 4.3

Rationale The certainty that an LRS has an accurate and complete collection of data is guaranteed by the fact
that Statements cannot be logically changed or deleted. This immutability of Statements is a key
factor in enabling the distributed nature of Experience API.

However, not all Statements are perpetually valid once they have been issued. Mistakes or other
factors could require that a previously made Statement is marked as invalid. This is called "voiding a
Statement" and the reserved Verb “http://adlnet.gov/expapi/verbs/voided" is used for this purpose.
Any Statement that voids another cannot itself be voided.

Requirements

• When issuing a Statement that voids another, the Object of that voiding statement MUST have
the “objectType” field set to “StatementRef”.

• When issuing a Statement that voids another, the Object of that voiding statement MUST specify
the id of the statement-to-be-voided by its “id” field.

• Upon receiving a statement that voids another, the LRS SHOULD reject the entire request which
includes the voiding statement with HTTP 403 „Forbidden‟ if the request is not from a source
authorized to void Statements.

• Upon receiving a statement that voids another, the LRS SHOULD return a descriptive error if the
target Statement cannot be found.

• Upon receiving a statement that voids another, the LRS MAY roll back any changes to Activity or
Agent definitions which were introduced by the Statement that was just voided.

• An Activity Provider that wants to “unvoid” a previously voided Statement SHOULD issue that
Statement again under a new id.

• A reporting system SHOULD NOT show voided or voiding Statements by default.

Note See "Statement References" in section 4.1.4.3 When the "Object" is a Statement for details about
making references to other Statements. To see how voided statements behave when queried, see
StatementRef in 7.2 Statement API.

Example

This example Statement voids a previous Statement which it identifies with the statement id
"e05aa883-acaf-40ad-bf54-02c8ce485fb0".

{ "actor" : { "objectType": "Agent", "name" : "Example Admin",
"mbox" : "mailto:admin@example.adlnet.gov" }, "verb" : {
"id":"http://adlnet.gov/expapi/verbs/voided", "display":{ "en-
US":"voided" } }, "object" : { "objectType":"StatementRef",
"id" : "e05aa883-acaf-40ad-bf54-02c8ce485fb0" } }

http://adlnet.gov/expapi/verbs/voided

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 35

Signed Statements 4.4

Description A Statement may include a digital signature to provide strong and durable evidence of the authenticity
and integrity of the Statement.

Rationale

Some Statements will have regulatory or legal significance, or otherwise require strong and durable
evidence of their authenticity and integrity. It may be necessary to verify these Statements without
trusting the system they were first recorded in, or perhaps without access to that system. Digital
signatures will enable a third-party system to validate such Statements.

Details Signed Statements include a JSON web signature (JWS) as an attachment. This allows the original
serialization of the Statement to be included along with the signature. For interoperability, the "RSA +
SHA" series of JWS algorithms have been selected, and for discoverability of the signer X.509
certificates SHOULD be used.

Requirements

• A Signed Statement MUST include a JSON web signature (JWS) as defined here:
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature, as an attachment with a usageType of
"http://adlnet.gov/expapi/attachments/signature" and a contentType of "application/octet-stream".

• The JWS signature MUST have a payload of a valid JSON serialization of the Statement
generated before the signature was added.

• The JWS signature MUST use an algorithm of "RS256","RS384", or "RS512".
• The JWS signature SHOULD have been created based on the private key associated with an

X.509 certificate.
• If X.509 was used to sign, the JWS header SHOULD include the "x5c" property containing the

associated certificate chain.

• The LRS MUST reject requests to store Statements that contain malformed signatures, with HTTP

400.

• The LRS SHOULD include a message in the response of a rejected statement. In order to verify
signatures are well formed, the LRS MUST do the following:
o Decode the JWS signature, and load the signed serialization of the Statement from the JWS

signature payload.
o Validate that the "original" Statement is logically equivalent to the received Statement.

• When making this equivalence check, differences which could have been caused by
allowed or required LRS processing of "id", "authority", "stored", "timestamp", or "version"
MUST be ignored.

o If the JWS header includes an X.509 certificate, validate the signature against that certificate
as defined in JWS.

• Clients MUST NOT assume a signature is valid simply because an LRS has accepted it.

Note The step of validating against the included X.509 certificate is intended as a way to catch mistakes in
the signature, not as a security measure. Clients MUST NOT assume a signature is valid simply
because an LRS has accepted it. The steps to authenticate a Signed Statement will vary based on the
degree of certainty required and are outside the scope of this specification.

Example See Appendix G: Example Signed Statement for an example..

https://en.wikipedia.org/wiki/Digital_signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://adlnet.gov/expapi/attachments/signature

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 36

5.0 MISCELLANEOUS TYPES

Document 5.1

Description The Experience API provides a facility for Activity Providers to save arbitrary data in the form of
documents, which may be related to an Activity, Agent, or combination of both.

Details Note that the following table shows generic properties, not a JSON Object as many other tables in this
specification do. The id is stored in the IRL, "updated" is HTTP header information, and "contents" is
the HTTP document itself (as opposed to an Object).

Property Type Description

id String Set by AP, unique within the scope of the agent or activity.

updated Timestamp When the document was most recently modified.

contents Arbitrary binary data The contents of the document.

Language Map 5.2

Description A language map is a dictionary where the key is an RFC 5646 Language Tag, and the value is a
string in the language specified in the tag. This map should be populated as fully as possible based
on the knowledge of the string in question in different languages.

http://tools.ietf.org/html/rfc5646

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 37

Extensions 5.3

Description Extensions are available as part of Activity Definitions, as part of statement context, or as part of
some statement result. In each case, they're intended to provide a natural way to extend those
elements for some specialized use. The contents of these extensions might be something valuable to
just one application, or it might be a convention used by an entire community of practice.

Details Extensions are defined by a map and logically relate to the part of the Statement where they are
present. The values of an extension can be any JSON value or data structure. Extensions in
Statement context provide context to the core experience, while those in the result provide elements
related to some outcome. For Activities, extensions provide additional information that helps define an
Activity within some custom application or community. The meaning and structure of extension values
under an IRI key are defined by the person who controls the IRI.

Requirements • The keys of an extensions map MUST be IRIs.
• An LRS MUST NOT reject a Statement based on the values of the extensions map.
• Clients SHOULD always strive to map as much information as possible into the built-in elements in

order to leverage interoperability among Experience API conformant tools.
• All extension IRIs SHOULD have controllers.
• The controller of an IRL extension key SHOULD make a human-readable description of the

intended meaning of the extension supported by the IRL accessible at the IRL.

Note

A Statement defined entirely by its extensions becomes meaningless as no other system can make
sense of it.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 38

Identifier Metadata 5.4

Description Additional information can be provided within a Statement about an identifier. This allows metadata
about the IRI to be expressed without the necessity of resolving it.

 Details There are several types of IRI identifiers used in this specification:

• Verb
• Activity id
• Activity type
• extension key
• attachment usage type

For supplying metadata about Activity ids, see Activity Definition Object.

For supplying metadata about all other identifiers, see the format below.:

Property Type Description

name Language Map The human readable/visual name

description Language Map Description

If this metadata is provided as described above, it is the canonical source of information about the
identifier it describes. As with Verbs, we recommend that Activity Providers look for and use
established, widely adopted identifiers for all types of IRI identifier other than Activity id.

Requirements • Metadata MAY be provided with an identifier.
• If metadata is provided, both name and description SHOULD be included.
• For any of the identifier IRIs above, if the IRI is an IRL that was coined for use with this

specification, the controller of that IRL SHOULD make this JSON metadata available at that IRL
when the IRL is requested and a Content-Type of "application/json" is requested.

• Where an identifier already exists, the Activity Provider SHOULD use the corresponding existing
identifier.

• The Activity Provider MAY create and use their own Verbs where a suitable identifier does not
already exist.

• Other sources of information MAY be used to fill in missing details, such as translations, or take
the place of this metadata entirely if it was not provided or cannot be loaded. This MAY include
metadata in other formats stored at the IRL of an identifier, particularly if that identifier was not
coined for use with this specification.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 39

6.0 RUNTIME COMMUNICATION

 Sections 6 and 7 detail the more technical side of the Experience API, dealing with how Statements
are transferred between Activity Provider and LRS. A number of libraries are under development for a
range of technologies (including JavaScript) which handle this part of the specification. It therefore
may not be necessary for content developers to fully understand every detail of this part of the
specification.

Encoding 6.1

Requirement • All strings must be encoded and interpreted as UTF-8.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 40

API Versioning 6.2

Rationale

Future revisions of the specification may introduce changes such as properties added to Statements.

Systems retrieving statements may then receive responses that include statements of different
versions. The version header allows for these version differences to be handled correctly, and to
ascertain that no partial or mixed LRS version implementations exist.

Using Semantic Versioning will allow Clients and LRSs to reliably know whether they're compatible or
not as the specification changes.

Details

Starting with 1.0.0, xAPI will be versioned according to Semantic Versioning 1.0.0.

Every request from a Client and every response from the LRS must include an HTTP header with the

name “X-Experience-API-Version” and the version as the value. Example: X-Experience-API-

Version : 1.0.1

LRS

Requirements

• The LRS MUST include the "X-Experience-API-Version" header in every response.
• The LRS MUST set this header to "1.0.1".
• The LRS MUST accept requests with a version header of "1.0" as if the version header was

"1.0.0".
• The LRS MUST reject requests with version header prior to "1.0.0" unless such requests are

routed to a fully conformant implementation of the prior version specified in the header.
• The LRS MUST reject requests with a version header of "1.1.0" or greater.
• The LRS MUST make these rejects by responding with an HTTP 400 error including a short

description of the problem.

Client

Requirements

• The Client MUST include the “X-Experience-API-Version” header in every request.
• The Client MUST set this header to “1.0.1”.
• The Client SHOULD tolerate receiving responses with a version of "1.0.0" or later.
• The Client SHOULD tolerate receiving data structures with additional properties.
• The Client SHOULD ignore any properties not defined in version 1.0.0 of the spec.

Conversion

Requirements

• Systems MUST NOT convert Statements of newer versions into a prior version format, e.g., in
order to handle version differences.

• Systems MAY convert Statements of older versions into a newer version only by following the
methods described in Appendix F: Converting Statements to 1.0.0.

http://semver.org/spec/v1.0.0.html

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 41

Concurrency 6.3

Description Concurrency control makes certain that an API consumer does not PUT changes based on old data
into an LRS.

Details xAPI will use HTTP 1.1 entity tags (ETags) to implement optimistic concurrency control in the portions
of the API where PUT may overwrite existing data, being:

• State API
• Agent Profile API
• Activity Profile API

The State API will permit PUT Statements without concurrency headers, since state conflicts are
unlikely. The requirements below only apply to Agent Profile API and Activity Profile API.

Client

Requirements

• A Client using either Agent Profile API or Activity Profile API MUST include the If-Match header or
the If-None-Match header.

LRS

Requirements

• An LRS responding to a GET request MUST add an ETag HTTP header to the response. (The
reason for specifying the LRS ETag format is to allow API consumers that can't read the ETag
header to calculate it themselves.)

• An LRS responding to a GET request MUST calculate the value of this header to be a hexidecimal
string of the SHA-1 digest of the contents.

• An LRS responding to a GET request MUST enclose the header in quotes.
• An LRS responding to a PUT request MUST handle the If-Match header as described in

RFC2616, HTTP 1.1 if it contains an ETag, in order to detect modifications made after the
consumer last fetched the document.

• An LRS responding to a PUT request MUST handle the If-None-Match header as described in
RFC2616, HTTP 1.1 if it contains "*", in order to detect when there is a resource present that the
consumer is not aware of.

If the header precondition in either of the above cases fails, the LRS:

• MUST return HTTP status 412 "Precondition Failed".
• MUST NOT make a modification to the resource.

If a PUT request is received without either header for a resource that already exists, the LRS:

• MUST return HTTP status 409 "Conflict".
• MUST return a plain text body explaining that the consumer SHOULD

o check the current state of the resource.
o set the "If-Match" header with the current ETag to resolve the conflict.

• MUST NOT make a modification to the resource.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 42

Security 6.4

Rationale In order to balance the interoperability and the varying security requirements of different
environments, several authentication options are defined.

Details The below matrix describes the possible authentication scenarios.

A registered application is an application that will authenticate to the LRS as an OAuth consumer
that has been registered with the LRS. A known user is a user account on the LRS, or on a system
which the LRS trusts to define users.

 Known user User unknown

Application is
registered

Standard workflow for OAuth.

LRS trusts application to access xAPI without
additional user credentials. OAuth token steps
are not invoked.

Application is
not registered

The application Agent is not identified
as a registered Agent and the LRS
cannot make assumptions on its
identity.

No application

HTTP Basic Authentication is used
instead of OAuth, since no application
is involved.

No
authentication

MAY be supported by the LRS, possibly for testing purposes

Requirements The LRS MUST support authentication using at least one of the following methods:

• OAuth 1.0 (RFC 5849), with signature methods of “HMAC-SHA1”, “RSA-SHA1”, and “PLAIN
TEXT”

• HTTP Basic Authentication
• Common Access Cards (implementation details to follow in a later version)
• The LRS MUST handle making, or delegationg, decisions on the validity of Statements, and

determining what operations may be performed based on the credentials used.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 43

Process of Each Scenario 6.4.1

Requirements

• The LRS must record the application's name and a unique consumer key (identifier).
• The LRS must provide a mechanism to complete this registration, or delegate to another system

that provides such a mechanism.
• The LRS MUST be able to be configured for complete support of the xAPI:

o With any of the methods below.
o In any of the workflow scenarios below.

• The LRS MAY (for security reasons):
o Support a subset of the methods below.
o Limit the known users or registered applications.

• The LRS SHOULD at a minimum supply OAuth with "HMAC-SHA1" and "RSA-SHA1" signatures

Application

registered +

known user

Process and

Requirements

• Use endpoints in section 6.4.2 OAuth Authorization Scope to complete the standard workflow.
• If this form of authentication is used to record Statements and no authority is specified, the LRS

should record the authority as a group consisting of an Agent representing the registered
application, and an Agent representing the known user.

Application

registered +

user unknown

Process and

Requirements

• The LRS honors requests that are signed using OAuth with the registered application's credentials
and with an empty token and token secret.

• If this form of authentication is used to record Statements and no authority is specified, the LRS
should record the authority as the Agent representing the registered application.

Application not

registered +

known user

Process and

Requirements

• Use a blank consumer secret.
• Call "Temporary Credential" request.
• Specify "consumer_name" and other usual parameters. User will then see "consumer_name" plus

a warning that the identity of the application requesting authorization cannot be verified.
• The LRS MUST record an authority that includes both that application and the authenticating user,

as a group, since OAuth specifies an application.

No application +

known user

Process and

Requirements

• Use username/password combination that corresponds to an LRS login.
• Authority to be recorded as the Agent identified by the login, unless…

o other Authority is specified and…
o LRS trusts the known user to specify this Authority.

No authorization

Process and

Requirements

• Requests should include headers for HTTP Basic Authentication based on a blank username and
password, in order to distinguish an explicitly unauthenticated request from a request that should
be given a HTTP Basic Authentication challenge.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 44

OAuth Authorization Scope 6.4.2

Description These are recommendations for scopes which should enable an LRS and an application
communicating using the xAPI to negotiate a level of access which accomplishes what the application
needs while minimizing the potential for misuse. The limitations of each scope are in addition to any
security limitations placed on the user account associated with the request.

Details The following table lists xAPI scope values:

Scope Permission

statements/write write any Statement

statements/read/mine read Statements written by "me", that is with an authority matching what the LRS
would assign if writing a Statement with the current token.

statements/read read any Statement

state read/write state data, limited to Activities and Actors associated with the current
token to the extent it is possible to determine this relationship.

define (re)Define Activities and Actors. If storing a Statement when this is not granted,
ids will be saved and the LRS may save the original Statement for audit purposes,
but should not update its internal representation of any Actors or Activities.

profile read/write profile data, limited to Activities and Actors associated with the current
token to the extent it is possible to determine this relationship.

all/read unrestricted read access

all unrestricted access

OAuth Extended Parameters

 Note that the parameters "consumer_name" and "scope" are not part of OAuth 1.0, and therefore if
used should be passed as query string or form parameters, not in the OAuth header.

OAuth Endpoints

Name Endpoint Example

Temporary Credential Request OAuth/initiate http://example.com/xAPI/OAuth/initiate

Resource Owner Authorization OAuth/authorize http://example.com/xAPI/OAuth/authorize

Token Request OAuth/token http://example.com/xAPI/OAuth/token

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 45

Requirements • The LRS MUST accept a scope parameter as defined in OAuth 2.0.
• The LRS MUST assume a requested scope of "statements/write" and "statements/read/mine" if

no scope is specified.
• The LRS MUST support the scope of "all" as a minimum.
• The LRS MAY support other scopes.
• The Client SHOULD request only the minimal needed scopes, to increase the chances that the

request will be granted.

Example The list of scopes determines the set of permissions that is being requested. For example, an
instructor might grant "statements/read" to a reporting tool, but the LRS would still limit that tool to
Statements that the instructor could read if querying the LRS with their credentials directly (such as
Statements relating to their students).

https://tools.ietf.org/html/draft-ietf-oauth-v2-22%22%20%5Cl%20%22section-3.3

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 46

7.0 DATA TRANSFER (REST)

Description This section describes that the xAPI consists of 4 sub-APIs: Statement, State, Agent Profile, and
Activity Profile. The four sub-APIs of the Experience API are handled via RESTful HTTP methods.
The Statement API can be used by itself to track learning records.

Note In all of the example endpoints given in the specification, "http://example.com/xAPI/" is the example
IRL of the LRS. All other IRI syntax after this represents the particular endpoint used.

Requirements • The LRS MUST reject with HTTP 400 Bad Request status any request to any of these APIs that

use any parameters which the LRS does not recognize. (Note: LRSs may recognize and act on
parameters not in this specification).

• The LRS MUST reject with HTTP 400 Bad Request status any request to any of these APIs that

use any matching parameters described in this specification in all but case.
• The LRS MUST reject a batch of statements if any statement within that batch is rejected.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 47

Error Codes 7.1

Description The list below offers some general guidance on HTTP error codes that could be returned from various
methods in the API.

Details

400 Bad Request.
Indicates an error condition caused by an invalid or missing argument. The term
"invalid arguments" includes malformed JSON or invalid Object structures.

401

Unauthorized.

Indicates that authentication is required, or in the case authentication has been
posted in the request, that the given credentials have been refused.

403 Forbidden.
Indicates that the request is unauthorized for the given credentials. Note this is
different than refusing the credentials given. In this case, the credentials have been
validated, but the authenticated Client is not allowed to perform the given action.

404 Not Found.
Indicates the requested resource was not found. May be returned by any method
that returns a uniquely identified resource, for instance, any State or Agent Profile or
Activity Profile API call targeting a specific document, or the method to retrieve a
single Statement.

409 Conflict.
Indicates an error condition due to a conflict with the current state of a resource, in
the case of State API, Agent Profile or Activity Profile API calls, or in the Statement
PUT call. See Section 6.3 Concurrency for more details.

412 Precondition

Failed.

Indicates an error condition due to a failure of a precondition posted with the
request, in the case of State or Agent Profile or Activity Profile API calls. See
Section 6.3 Concurrency for more details.

413 Request

Entity Too

Large.

Indicates that the LRS has rejected the Statement or document because its size is
larger than the maximum allowed by the LRS. The LRS is free to choose any limit
and MAY vary this limit on any basis, e.g., per authority, but MUST be configurable
to accept Statements of any size.

500 Internal

Server Error.

Indicates a general error condition, typically an unexpected exception in processing
on the server.

Requirements • An LRS MUST return the error code most appropriate to the error condition based on the list
above.

• An LRS SHOULD return a message in the response explaining the cause of the error.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 48

Statement API 7.2

Description The basic communication mechanism of the Experience API.

PUT Statements 7.2.1

Details Example endpoint: http://example.com/xAPI/statements

Stores Statement with the given id.

Returns: 204 No Content

Parameter Type Default Required Description

statementId String Required id of Statement to record

Requirements • An LRS MUST NOT make any modifications to its state based on receiving a Statement with a

statementID that it already has a Statement for. Whether it responds with 409 Conflict or 204

No Content, it MUST NOT modify the Statement or any other Object.

• If the LRS receives a Statement with an id it already has a Statement for, it SHOULD verify the

received Statement matches the existing one and return 409 Conflict if they do not match.

• The LRS MAY respond before Statements that have been stored are available for retrieval.

POST Statements 7.2.2

Details Example endpoint: http://example.com/xAPI/statements

Stores a Statement, or a set of Statements. Since the PUT method targets a specific Statement id,
POST must be used rather than PUT to save multiple Statements, or to save one Statement without
first generating a Statement id. An alternative for systems that generate a large amount of Statements
is to provide the LRS side of the API on the AP, and have the LRS query that API for the list of
updated (or new) Statements periodically. This will likely only be a realistic option for systems that
provide a lot of data to the LRS.

Returns: 200 OK, statement id(s) (UUID).

Requirements • An LRS MUST NOT make any modifications to its state based on a receiving a Statement with a

statementId that it already has a statement for. Whether it responds with 409 Conflict, or

204 No Content, it MUST NOT modify the Statement or any other Object.

• If the LRS receives a Statement with an id it already has a Statement for, it SHOULD verify the

received Statement matches the existing one and return 409 Conflict if they do not match.

• The LRS MAY respond before Statements that have been stored are available for retrieval
• GET Statements MAY be called using POST and form fields if necessary as query strings have

limits.
• The LRS MUST differentiate a POST to add a Statement or to list Statements based on the

parameters passed.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 49

GET Statements 7.2.3

Details Example endpoint: http://example.com/xAPI/statements

This method may be called to fetch a single Statement or multiple Statements. If the statementId or
voidedStatementId parameter is specified a single Statement is returned.

Otherwise returns: A StatementResult Object, a list of Statements in reverse chronological order
based on "stored" time, subject to permissions and maximum list length. If additional results are
available, an IRL to retrieve them will be included in the StatementResult Object.

Returns: 200 OK, Statement or Statement Result (See section 4.2 for details)

Parameter Type Default Description

statementid String id of statement to fetch

voidedStatement
id

String

 id of voided statement to fetch. see Voided Statements

agent

Agent or Identified
Group Object
(JSON)

 Filter, only return Statements for which the specified Agent
or group is the Actor or Object of the Statement.

o Agents or identified groups are equal when the same
Inverse Functional Identifier is used in each Object
compared and those Inverse Functional Identifiers
have equal values.

o For the purposes of this filter, groups that have
members which match the specified Agent based on
their Inverse Functional Identifier as described above
are considered a match

See agent/group Object definition for details

verb Verb id (IRI) Filter, only return statements matching the specified verb
id.

activity Activity id (IRI) Filter, only return statements for which the Object of the
statement is an Activity with the specified id.

registration

UUID

 Filter, only return Statements matching the specified
registration id. Note that although frequently a unique
registration id will be used for one Actor assigned to one
Activity, this should not be assumed. If only Statements for
a certain Actor or Activity should be returned, those
parameters should also be specified.

related_activities

Boolean

False

Apply the Activity filter broadly. Include Statements for
which the Object, any of the context Activities, or any of
those properties in a contained Sub-Statement match the
Activity parameter, instead of that parameter's normal
behavior. Matching is defined in the same way it is for the
'Activity' parameter."

related_agents

Boolean

False

Apply the Agent filter broadly. Include Statements for
which the Actor, Object, Authority, Instructor, Team, or any
of these properties in a contained Sub-Statement match
the Agent parameter, instead of that parameter's normal
behavior. Matching is defined in the same way it is for the
'agent' parameter.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 50

Parameter Type Default Description

since Timestamp Only Statements stored since the specified timestamp
(exclusive) are returned.

until Timestamp Only Statements stored at or before the specified
timestamp are returned.

limit Nonnegative
Integer

0 Maximum number of Statements to return. 0 indicates
return the maximum the server will allow.

format

String: ("ids",
"exact", or
"canonical")

exact

If "ids", only include minimum information necessary in
Agent, Activity, and Group Objects to identify them. For
anonymous groups this means including the minimum
information needed to identify each member. If "exact",
return Agent, Activity, and Group Objects populated
exactly as they were when the Statement was received. .
An LRS requesting Statements for the purpose of
importing them would use a format of "exact".

If "canonical", return Activity Objects populated with the
canonical definition of the Activity Objects as determined
by the LRS, after applying the language filtering process
defined below, and return the original Agent Objects as in
"exact" mode.

Canonical Language Process: Activity Objects contain

Language Map Objects for name and description. Only
one language should be returned in each of these maps.

In the event of format being “canonical”, only one language
should be returned in each of these maps. In order to
choose the most relevant language, the LRS will apply the
Accept-Language header as described in RFC 2616
(HTTP 1.1), except that this logic will be applied to each
language map individually to select which language entry
to include, rather than to the resource (list of Statements)
as a whole.

attachments Boolean False If true LRS MUST use the multipart response format and
includes any attachments as described previously. If false,
the LRS sends the prescribed response with Content-Type
application/json and cannot use attachements.

ascending Boolean False If true, return results in ascending order of stored time.

Requirements • The LRS MUST reject with an HTTP 400 error any requests to this resource which contain both

statementId and voidedStatementId parameters

• The LRS MUST reject with an HTTP 400 error any requests to this resource which contain

statementId or voidedStatementId parameters, and also contain any other parameter besides
"attachments" or "format".

• The LRS MUST include the header "X-Experience-API-Consistent-Through", in ISO 8601
combined date and time format, on all responses to Statements requests, with a value of the
timestamp for which all Statements that have or will have a "stored" property before that time are
known with reasonable certainty to be available for retrieval. This time SHOULD take into account
any temporary condition, such as excessive load, which might cause a delay in Statements
becoming available for retrieval.

• If the attachment property of a GET statement is used and is set to "true", the LRS MUST use the
multipart response format and include all attachments as described in 4.1.11.

• If the attachment property of a GET statement is used and is set to “false”, the LRS MUST NOT
include attachment raw data and MUST report application/json

https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 51

Filter Conditions

for

StatementRefs

For filter parameters which are not time or sequence based (that is, other than since, until, or limit),
Statements which target another Statement (by using a StatementRef as the Object of the Statement)
will meet the filter condition if the targeted Statement meets the condition. The time and sequence
based parameters must still be applied to the Statement making the StatementRef in this manner.
This rule applies recursively, so that "Statement a" is a match when a targets b which targets c and
the filter conditions described above match for "Statement c".

For example, consider the Statement "Ben passed explosives training", and a follow up Statement:
"Andrew confirmed <StatementRef to original statement>". The follow-up Statement will not mention
"Ben" or "explosives training", but when fetching Statements with an Actor filter of "Ben" or an Activity
filter of "explosives training", both Statements match and will be returned so long as they fall into the
time or sequence being fetched.

This section does not apply when retrieving Statements with statementId or voidedStatementId.

Note StatementRefs used in the Statement field in context do not affect how Statements are filtered.

Voided Statements 7.2.4

Requirements • The LRS MUST not return any Statement which has been voided, unless that Statement has been
requested by voidedStatementId.

• The LRS MUST still return any Statements targeting the voided Statement when retrieving
statements using explicit or implicit time or sequence based retrieval, unless they themselves have
been voided, as described in the section on filter conditions for StatementRefs. This includes the
voiding Statement, which cannot be voided. Reporting tools can identify the presence and
statementId of any voided Statements by the target of the voiding Statement.

*Reporting tools wishing to retrieve voided statements SHOULD request these individually by
 voidedStatementId.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 52

Document APIs 7.3

 The three Document APIs provide document storage for Activity Providers and Agents. The details of
each API are found in the following sections, and the information in this section applies to all three
APIs.

Details

API Method Endpoint Example

State API POST activities/state http://example.com/xAPI/activities/state

Activity Profile API POST activities/profil
e

http://example.com/xAPI/activities/profile

Agent Profile API POST agent/profile http://example.com/xAPI/agents/profile

Requirements • An Activity Provider MAY send documents to any of the document APIs for Activities and Agents
that the LRS does not have prior knowledge of.

• The LRS MUST NOT reject documents on the basis of not having prior knowledge of the Activity
and/or Agent.

JSON Procedure

with

Requirements

Activity Providers MAY use Documents of content type "application/json" to store sets of variables.
The following process walks through that process and the process requirements.

For example a document contains:

{
 "x" : "foo",
 "y" : "bar"
}

 When an LRS receives a POST request with content type application/json for an existing document
also of content type application/json, it MUST merge the posted document with the existing document.
In this context „merge‟ is defined as:

• de-serialize the Objects represented by each document.
• for each property directly defined on the Object being posted, set the corresponding property on

the existing Object equal to the value from the posted Object.
• store any valid json serialization of the existing Object as the document referenced in the request.

 Note that only top-level properties are merged, even if a top-level property is an Object. The entire
contents of each original property are replaced with the entire contents of each new property.

http://example.com/xAPI/agents/profile

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 53

 For example, this document is POSTed with the same id as the existing document above:

{
 "x" : "bash",
 "z" : "faz"
}

the resulting document stored in the LRS is:

{
"x" : "bash",
"y" : "bar",
"z" : "faz"
}

If the original document exists, and the original document or the document being posted do not have a
Content-Type: of "application/json", or if either document cannot be parsed as JSON Objects, the LRS

MUST respond with HTTP status code 400 Bad Request, and MUST NOT update the target

document as a result of the request.

If the original document does not exist, the LRS MUST treat the request the same as it would a PUT
request and store the document being posted.

If the merge is successful, the LRS MUST respond with HTTP status code 204 No Content.

If an AP needs to delete a property, it SHOULD use a PUT request to replace the whole document as
described below.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 54

State API 7.4

Description Generally, this is a scratch area for Activity Providers that do not have their own internal storage, or
need to persist state across devices. When using the State API, be aware of how the stateId
parameter affects the semantics of the call. If it is included, the GET and DELETE methods will act
upon a single defined state document identified by "stateId". Otherwise, GET will return the available
ids, and DELETE will delete all state in the context given through the other parameters.

Details The semantics of the call are driven by the stateId parameter. If it is included, the
GET and DELETE methods will act upon a single defined state document identified
by "stateId". Otherwise, GET will return the available ids, and DELETE will delete all
state in the context given through the other parameters.

Single Document (PUT | POST | GET | DELETE)

 Example endpoint: http://example.com/xAPI/activities/state

Stores, fetches, or deletes the document specified by the given stateId that exists in the context of the
specified Activity, Agent, and registration (if specified).

Returns: (PUT | POST | DELETE) 204 No Content

Returns: (GET) 200 OK, State Content

Parameter Type Required Description

activityid String yes The Activity id associated with this state.

agent JSON yes The Agent associated with this state.

registration UUID no The registration id associated with this state.

stateid String yes The id for this state, within the given context.

Multiple Document GET

 Example endpoint: http://example.com/xAPI/activities/state

Fetches ids of all state data for this context (Activity + agent [+ registration if specified]). If “since”
parameter is specified, this is limited to entries that have been stored or updated since the specified
timestamp (exclusive).

Returns: 200 OK, Array of ids

Parameter Type Required Description

activityid String yes The Activity id associated with these states.

agent JSON yes The Agent associated with these states.

registration UUID no The registration id associated with these states.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 55

since Timestamp no Only ids of states stored since the specified timestamp
(exclusive) are returned.

Multiple Document DELETE

 Example endpoint: http://example.com/xAPI/activities/state

Deletes all state data for this context (activity + agent [+ registration if specified]).

Returns: 204 No Content

Parameter Type Required Description

activityid String yes The Activity id associated with this state.

agent JSON yes The Agent associated with this state.

registration UUID no The registration id associated with this state.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 56

Activity Profile API 7.5

Description The Activity Profile API is much like the State API, allowing for arbitrary key / document pairs to be
saved which are related to an Activity

Details The semantics of the call are driven by the stateId parameter. If it is included, the GET method will act
upon a single defined document identified by "profileId". Otherwise, GET will return the available ids.

The Activity Profile API also includes a method to retrieve a full description of an Activity from the
LRS.

Full Activity Object GET

 Example endpoint: http://example.com/xAPI/activities

Loads the complete Activity Object specified.

Returns: 200 OK, Content

Parameter Type Required Description

activityid String yes The id associated with the Activities to load.

Single Document PUT | POST | GET | DELETE

 Example endpoint: http://example.com/xAPI/activities/profile

Saves/retrieves/deletes the specified profile document in the context of the specified Activity.

Returns: (PUT | POST | DELETE) 204 No Content

Returns: (GET) 200 OK, Profile Content

Parameter Type Required Description

activityid String yes The Activity id associated with this profile.

profileid String yes The profile id associated with this profile.

Multiple Document GET

 Example endpoint: http://example.com/xAPI/activities/profile

Loads ids of all profile entries for an Activity. If "since" parameter is specified, this is limited to entries
that have been stored or updated since the specified timestamp (exclusive).

Returns: 200 OK, List of ids

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 57

Parameter Type Required Description

activityid String yes The Activity id associated with these profiles.

since Timestamp no Only ids of profiles stored since the specified timestamp
(exclusive) are returned.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 58

Agent Profile API 7.6

Description The Agent Profile API is much like the State API, allowing for arbitrary key / document pairs to be
saved which are related to an Agent.

Details The semantics of the call are driven by the stateId parameter. If it is included, the GET method will act
upon a single defined document identified by "profileId". Otherwise, GET will return the available ids.

The Agent Profile API also includes a method to retrieve a special Object with combined information
about an Agent derived from an outside service, such as a directory service.

Combined Information GET

Details Example endpoint: http://example.com/xAPI/agents

Return a special, Person Object for a specified Agent. The Person Object is very similar to an Agent
Object, but instead of each attribute having a single value, each attribute has an array value, and it is
legal to include multiple identifying properties. Note that the argument is still a normal Agent Object
with a single identifier and no arrays. Note that this is different from the FOAF concept of person,
person is being used here to indicate a person-centric view of the LRS Agent data, but Agents just
refer to one persona (a person in one context).

Requirements • An LRS capable of returning multiple identifying properties for a Person SHOULD require the
connecting credentials have increased, explicitly given permissions.

• An LRS SHOULD reject insufficiently privileged requests with 403 "Forbidden".

• If an LRS does not have any additional information about an Agent to return, the LRS MUST still
return a Person when queried, but that Person Object will only include the information associated
with the requested Agent.

Person Properties

Details

Property Type Description

objectType String "Person". Required.

name Array of strings. Optional. List of names of Agents to retrieve.

mbox Array of IRIs in the form
"mailto:email address".

List of e-mail addresses of Agents to retrieve.

mbox_sha1sum Array of strings. List of the SHA1 hashes of mailto IRIs (such as go in an
mbox property).

openid Array of strings. List of openids that uniquely identify the Agents to retrieve.

account Array of account objects. List of accounts to match. Complete account Objects
(homePage and name) must be provided.

See also: Section 4.1.2.1 Agent.

Returns: 200 OK, Expanded Agent Object

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 59

Parameter Type Required Description

agent Object (JSON) yes The Agent representation to use in fetching expanded
Agent information.

Requirements All array properties must be populated with members with the same definition as the
similarly named property from Agent Objects.

Single Agent or Profile PUT | POST | GET | DELETE

 Example endpoint: http://example.com/xAPI/agents/profile

Saves/retrieves/deletes the specified profile document in the context of the specified Agent.

Returns: (PUT | POST | DELETE) 204 No Content

Returns: (GET) 200 OK, Profile Content

Parameter Type Required Description

agent Object (JSON) yes The Agent associated with this profile.

profileId String yes The profile id associated with this profile.

Multiple Agent or Profile GET

 Example endpoint: http://example.com/xAPI/agents/profile

Loads ids of all profile entries for an Agent. If "since" parameter is specified, this is limited to entries
that have been stored or updated since the specified timestamp (exclusive).

Returns: 200 OK , List of ids

Parameter Type Required Description

agent Object (JSON) yes The Agent associated with this profile.

since Timestamp no Only ids of profiles stored since the specified timestamp
(exclusive) are returned.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 60

About Resource 7.7

Description Returns JSON Object containing information about this LRS, including the xAPI version supported.

Rationale

Primarily this resource exists to allow Clients that support multiple xAPI versions to decide which
version to use when communicating with the LRS. Extensions are included to allow other uses to
emerge.

Details

Information GET

Example endpoint: http://example.com/xAPI/about

Returns: 200 OK, Single 'about' JSON document.

Property Type Description

version string xAPI version this LRS supports

Extensions Object A map of other properties as needed.

Requirements • An LRS MUST return the JSON document described above, with a version property that includes
the latest minor and patch version the LRS conforms to, for each major version.

o For version 1.0.0 of this specification, this means that "1.0.0" MUST be included; "0.9"
and "0.95" MAY be included. (For the purposes of this requirement, "0.9" and "0.95" are
considered major versions.).

• An LRS SHOULD allow unauthenticated access to this resource.
• An LRS MUST NOT reject requests based on their version header as would otherwise be

required by 6.2 API Versioning.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 61

Cross Origin Requests 7.8

Description One of the goals of the xAPI is to allow cross-domain tracking, and even though xAPI seeks to enable
tracking from applications other than browsers, browsers still need to be supported. Internet Explorer
8 and 9 do not implement Cross Origin Resource Sharing, but rather use their own Cross Domain
Request API, which cannot use all of the xAPI as described above due to only supporting "GET" and
"POST", and not allowing HTTP headers to be set.

Details/

Requirements

The following describes alternate syntax for consumers to use only when unable to use the usual
syntax for specific calls due to the restrictions mentioned above.

Method: All xAPI requests issued must be POST. The intended xAPI method must be included as the
only query string parameter on the request.

Example: http://example.com/xAPI/statements?method=PUT

Headers: Any required parameters which are expected to appear in the HTTP header must instead
be included as a form parameter with the same name.

Content: If the xAPI call involved sending content, that content must now be encoded and included
as a form parameter called "content". The LRS will interpret this content as a UTF-8 string. Storing
binary data is not supported with this syntax.

Attachments: Sending attachment data requires sending a multipart/mixed request, therefore
sending attachment data is not supported with this syntax. See 4.1.11. Attachments

• The LRS must support the syntax above.

See Appendix B for an example function written in JavaScript which transforms a normal request into
one using this alternate syntax.

It should also be noted that versions of Internet Explorer lower than 10 do not support Cross Domain
Requests between HTTP and HTTPS. This means that for IE9 and lower, if the LRS is on an HTTPS
domain, the Client sending the Statement must also be on HTTPS. If the LRS is on HTTP, the Client
must be too.

There may be cases where there is a requirement for the Client Activity Provider to support IE8 and
IE9 where the Client code is hosted on a different scheme (HTTP or HTTPS) from the LRS. In these
cases, proxy is needed to communicate to the LRS. Two simple solutions might be to:

1) set up a proxy pass through on the same scheme as the Client code to the LRS, or…
2) to host an intermediary server-side LRS on the same scheme as the Client code to route

Statements to the target LRS.

• The LRS MAY choose to provide both HTTP and HTTPS endpoints to support this use case.
• The LRS and the Client SHOULD consider the security risks before making the decision to use

this scheme.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 62

Validation 7.9

Description The function of the LRS within the xAPI is to store and retrieve Statements. As long as it has sufficient
information to perform these tasks, it is expected that it does them. Validation of Statements in the
Experience API is focused solely on syntax, not semantics. Enforcing the rules that ensure valid
meaning among Verb definitions, Activity types, and extensions is the responsibility of the Activity
Provider sending the Statement.

Requirements • The LRS SHOULD enforce rules regarding structure.
• The LRS SHOULD NOT enforce rules regarding meaning.

.

HTTP HEAD 7.10

Description The LRS will respond to HEAD requests by returning the meta information only, using the HTTP
headers, and not the actual document.

Rationale Clients accessing the LRS may need to check if a particular Statement exists, or determine the
modification date of documents such as state or Activity or Agent profile. Particularly for large
documents it's more efficient not to get the entire document just to check its modification date.

Requirements • The LRS MUST respond to any HTTP HEAD request as it would have responded to an otherwise
identical HTTP GET request except:

o The message-body MUST be omitted.
o The Content-Length header MAY be omitted, in order to avoid wasting LRS resources.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 63

APPENDICES

Appendix A: Bookmarklet

Description The following is a prototype of a Bookmarklet configured using the Experience API.

Details An xAPI Bookmarklet enables individual user tracking with basic authentication. Examples could be
an "I think this," "I learned this," "I like this," or "I don't like this" Statement that allows self-reporting.
The following is an example of such a bookmarklet, and the Statement that this bookmarklet would
send if used on the page: http://adlnet.gov/xapi

The bookmarklet MAY be provided by the LRS to track a specific user for behavior analytics.

Usage The LRS IRL (variable “url” in the example below), authentication, and Actor information is hard coded
into the bookmarklet.

Note: Since the authorization token must be included in the bookmarklet, the LRS should provide a
token with limited privileges. Enabling the storage of self-reported learning Statements is sufficient
permission to get full use from this prototype.

In order to allow cross-domain reporting of Statements, a browser that supports the "Access-Control-
Allow-Origin" and "Access-Control-Allow-Methods" headers is necessary, such as IE 8+, FF 3.5+,
Safari 4+, Safari iOS, Chrome, or Android browser. The server needs to set required headers based
on the browser.

In the example below, the following values in the first few lines should be replaced with your own
values. All other values should be left as they are. Be sure to include a UUID as a part of the
bookmarklet PUT statement, because if one is not provided, the LRS will generate one.

Value in example Explanation

http://localhost:8080/xAPI/ Endpoint of the LRS (where the Statements will be sent)

dGVzdDpwYXNzd29yZA==
Base 64 encoded username and password, usually in the form
"username : password".

learner@example.adlnet.gov Email address of the learner using the bookmarklet.

http://adlnet.gov/xapi

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 64

var url = "http://localhost:8080/xAPI/statements?statementId="+_ruuid();
var auth = "Basic dGVzdDpwYXNzd29yZA==";
var statement = {
 "actor" : {
 "objectType" : "Agent",
 "mbox" : "mailto:learner@example.adlnet.gov"
 },
 "verb" : {
 "id" : "",
 "display" : {}
 },
 "object" : {
 "id" : "",
 "definition" : {}
 }
};
var definition = statement.object.definition;

statement.verb.id = 'http://adlnet.gov/expapi/verbs/experienced';
statement.verb.display = { "en-US" : "experienced" };
statement.object.id = window.location.toString();
definition.type = "http://adlnet.gov/expapi/activities/link";

var xhr = new XMLHttpRequest();
xhr.open("PUT", url, true);
xhr.setRequestHeader("X-Experience-API-Version", "1.0");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Authorization", auth);
xhr.onreadystatechange = function() {
 if(xhr.readyState == 4) {
 alert(xhr.status + " : " + xhr.responseText);
 }
};
xhr.send(JSON.stringify(statement));

/*!
Modified from: Math.uuid.js (v1.4)
http://www.broofa.com
mailto:robert@broofa.com

Copyright (c) 2010 Robert Kieffer
Dual licensed under the MIT and GPL licenses.
*/
function _ruuid() {
 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
 var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
 return v.toString(16);
 });
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 65

Example Statement Using Bookmarklet

Headers

{
 "X-Experience-API-Version": "1.0.0",
 "Content-Type": "application/json",
 "Authorization": "Basic dGVzdDpwYXNzd29yZA==",
 "Referer": "http://adlnet.gov/xapi/",
 "Content-Length": "###",
 "Origin": "http://adlnet.gov"
}

Method Path

PUT : /xAPI/Statements/?statementId=ed1d064a-eba6-45ea-a3f6-34cdf6e1dfd9

Body:
{
 "actor": {
 "objectType": "Agent",
 "mbox": "mailto:learner@example.adlnet.gov"
 },
 "verb" : {
 "id": "http://adlnet.gov/expapi/verbs/experienced",
 "display": {
 "en-US": "experienced"
 }
 },
 "object": {
 "id": "http://adlnet.gov/xapi/",
 "definition": {
 "type": "http://adlnet.gov/expapi/activities/link"
 }
 }
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 66

Appendix B: Creating an "IE Mode" Request

function getIEModeRequest(method, url, headers, data){

 var newUrl = url;

 // Everything that was on query string goes into form vars
 var formData = new Array();
 var qsIndex = newUrl.indexOf('?');
 if(qsIndex > 0){
 formData.push(newUrl.substr(qsIndex+1));
 newUrl = newUrl.substr(0, qsIndex);
 }

 // Method has to go on querystring, and nothing else
 newUrl = newUrl + '?method=' + method;

 // Headers
 if(headers !== null){
 for(var headerName in headers){
 formData.push(
 headerName + "=" +
 encodeURIComponent(
 headers[headerName]));
 }
 }

 // The original data is repackaged as "content" form var
 if(data !== null){
 formData.push('content=' + encodeURIComponent(data));
 }

 return {
 "method":"POST",
 "url":newUrl,
 "headers":{},
 "data":formData.join("&")
 };
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 67

Appendix C: Example statements

 Example of a simple statement (line breaks are for display purposes only):

{
 "id":"fd41c918-b88b-4b20-a0a5-a4c32391aaa0",
 "actor":{
 "objectType": "Agent",
 "name":"Project Tin Can API",
 "mbox":"mailto:user@example.com"
 },
 "verb":{
 "id":"http://adlnet.gov/expapi/verbs/created",
 "display":{
 "en-US":"created"
 }
 },
 "object":{
 "id":"http://example.adlnet.gov/xapi/example/simplestatement",
 "definition":{
 "name":{
 "en-US":"simple statement"
 },
 "description":{
 "en-US":"A simple Experience API statement. Note that the LRS
 does not need to have any prior information about the actor
(learner), the
 verb, or the activity/object."
 }
 }
 }
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 68

 Typical simple completion with verb "attempted":

{
 "actor":{
 "objectType": "Agent",
 "name":"Example Learner",
 "mbox":"mailto:example.learner@adlnet.gov"
 },
 "verb":{
 "id":"http://adlnet.gov/expapi/verbs/attempted",
 "display":{
 "en-US":"attempted"
 }
 },
 "object":{
 "id":"http://example.adlnet.gov/xapi/example/simpleCBT",
 "definition":{
 "name":{
 "en-US":"simple CBT course"
 },
 "description":{
 "en-US":"A fictitious example CBT course."
 }
 }
 },
 "result":{
 "score":{
 "scaled":0.95
 },
 "success":true,
 "completion":true
 }
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 69

A long example statement showcasing most of the properties available. This example
shows a statement returned by an LRS including the authority and stored properties
set by the LRS:

{
 "id": "6690e6c9-3ef0-4ed3-8b37-7f3964730bee",
 "actor": {
 "name": "Team PB",
 "mbox": "mailto:teampb@example.com",
 "member": [
 {
 "name": "Andrew Downes",
 "account": {
 "homePage": "http://www.example.com",
 "name": "13936749"
 },
 "objectType": "Agent"
 },
 {
 "name": "Toby Nichols",
 "openid": "http://toby.openid.example.org/",
 "objectType": "Agent"
 },
 {
 "name": "Ena Hills",
 "mbox_sha1sum": "esydnag7fhxkquopagrr4aiputa=",
 "objectType": "Agent"
 }
],
 "objectType": "Group"
 },
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/attended",
 "display": {
 "en-GB": "attended",
 "en-US": "attended"
 }
 },
 "result": {
 "extensions": {
 "http://example.com/profiles/meetings/resultextensions/minuteslocation":
"X:\\meetings\\minutes\\examplemeeting.one"
 },
 "success": true,
 "completion": true,
 "response": "We agreed on some example actions.",
 "duration": "PT1H0M0S"
 },
 "context": {
 "registration": "ec531277-b57b-4c15-8d91-d292c5b2b8f7",
 "contextActivities": {
 "parent": [
 {
 "id": "http://www.example.com/meetings/series/267",
 "objectType": "Activity"
 }
],
 "category": [
 {

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 70

 "id":
"http://www.example.com/meetings/categories/teammeeting",
 "objectType": "Activity",
 "definition": {
 "name": {
 "en": "team meeting"
 },
 "description": {
 "en": "A category of meeting used for regular team
meetings."
 },
 "type":
"http://example.com/expapi/activities/meetingcategory"
 }
 }
],
 "other": [
 {
 "id": "http://www.example.com/meetings/occurances/34257",
 "objectType": "Activity"
 },
 {
 "id": "http://www.example.com/meetings/occurances/3425567",
 "objectType": "Activity"
 }
]
 },
 "instructor" :
 {
 "name": "Andrew Downes",
 "account": {
 "homePage": "http://www.example.com",
 "name": "13936749"
 },
 "objectType": "Agent"
 },
 "team":
 {
 "name": "Team PB",
 "mbox": "mailto:teampb@example.com",
 "objectType": "Group"
 },
 "platform" : "Example virtual meeting software",
 "language" : "tlh",
 "statement" : {
 "objectType":"StatementRef",
 "id" :"6690e6c9-3ef0-4ed3-8b37-7f3964730bee"
 }

 },
 "timestamp": "2013-05-18T05:32:34.804Z",
 "stored": "2013-05-18T05:32:34.804Z",
 "authority": {
 "account": {
 "homePage": "http://cloud.scorm.com/",
 "name": "anonymous"
 },
 "objectType": "Agent"
 },

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 71

 "version": "1.0.0",
 "object": {
 "id": "http://www.example.com/meetings/occurances/34534",
 "definition": {
 "extensions": {

"http://example.com/profiles/meetings/activitydefinitionextensions/room": {"name":
"Kilby", "id" : "http://example.com/rooms/342"}
 },
 "name": {
 "en-GB": "example meeting",
 "en-US": "example meeting"
 },
 "description": {
 "en-GB": "An example meeting that happened on a specific occasion
with certain people present.",
 "en-US": "An example meeting that happened on a specific occasion
with certain people present."
 },
 "type": "http://adlnet.gov/expapi/activities/meeting",
 "moreInfo": "http://virtualmeeting.example.com/345256"
 },
 "objectType": "Activity"
 }
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 72

Appendix D: Example statement objects of different types

The object of a statement can be an activity, agent, group or statement. This appendix provides one
example of each.

Activity

{
 "id": "http://www.example.co.uk/exampleactivity",
 "definition": {
 "name": {
 "en-GB": "example activity",
 "en-US": "example activity"
 },
 "description": {
 "en-GB": "An example of an activity",
 "en-US": "An example of an activity"
 },
 "type": "http://www.example.co.uk/types/exampleactivitytype"
 },
 "objectType": "Activity"
}

Agent

{
 "name": "Andrew Downes",
 "mbox": "mailto:andrew@example.co.uk",
 "objectType": "Agent"
}

Group This example shows an identified group with members.

{
 "name": "Example Group",
 "account" : {
 "homePage" : "http://example.com/homePage",
 "name" : "GroupAccount"
 },
 "objectType": "Group",
 "member": [
 {
 "name": "Andrew Downes",
 "mbox": "mailto:andrew@example.com",
 "objectType": "Agent"
 },
 {
 "name": "Aaron Silvers",
 "openid": "aaron.openid.example.org",
 "objectType": "Agent"
 }
],
}

Statement This example shows a Sub-Statement object whose object is a Statement Reference.

{
 "objectType": "SubStatement",
 "actor" : {
 "objectType": "Agent",
 "mbox":"mailto:agent@example.com"
 },

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 73

 "verb" : {
 "id":"http://example.com/confirmed",
 "display":{
 "en":"confirmed"
 }
 },
 "object": {
 "objectType":"StatementRef",
 "id" :"9e13cefd-53d3-4eac-b5ed-2cf6693903bb"
 }
 }

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 74

Appendix E: Example definitions for Activities of type "cmi.interaction"

True-false

"definition": {
 "description": {
 "en-US": "Does the xAPI include the concept of statements?"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "true-false",
 "correctResponsesPattern": [
 "true"
]
}

Choice

"definition": {
 "description": {
 "en-US": "Which of these prototypes are available at the beta site?"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "choice",
 "correctResponsesPattern": [
 "golf[,]tetris"
],
 "choices": [
 {
 "id": "golf",
 "description": {
 "en-US": "Golf Example"
 }
 },
 {
 "id": "facebook",
 "description": {
 "en-US": "Facebook App"
 }
 },
 {
 "id": "tetris",
 "description": {
 "en-US": "Tetris Example"
 }
 },
 {
 "id": "scrabble",
 "description": {
 "en-US": "Scrabble Example"
 }
 }
]
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 75

Fill-in

"definition": {
 "description": {
 "en-US": "Ben is often heard saying: "
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "fill-in",
 "correctResponsesPattern": [
 "Bob's your uncle"
]
}

Likert

"definition": {
 "description": {
 "en-US": "How awesome is Experience API?"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "likert",
 "correctResponsesPattern": [
 "likert_3"
],
 "scale": [
 {
 "id": "likert_0",
 "description": {
 "en-US": "It's OK"
 }
 },
 {
 "id": "likert_1",
 "description": {
 "en-US": "It's Pretty Cool"
 }
 },
 {
 "id": "likert_2",
 "description": {
 "en-US": "It's Damn Cool"
 }
 },
 {
 "id": "likert_3",
 "description": {
 "en-US": "It's Gonna Change the World"
 }
 }
]
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 76

Matching

"definition": {
 "description": {
 "en-US": "Match these people to their kickball team:"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "matching",
 "correctResponsesPattern": [
 "ben[.]3[,]chris[.]2[,]troy[.]4[,]freddie[.]1"
],
 "source": [
 {
 "id": "ben",
 "description": {
 "en-US": "Ben"
 }
 },
 {
 "id": "chris",
 "description": {
 "en-US": "Chris"
 }
 },
 {
 "id": "troy",
 "description": {
 "en-US": "Troy"
 }
 },
 {
 "id": "freddie",
 "description": {
 "en-US": "Freddie"
 }
 }
],
 "target": [
 {
 "id": "1",
 "description": {
 "en-US": "Swift Kick in the Grass"
 }
 },
 {
 "id": "2",
 "description": {
 "en-US": "We got Runs"
 }
 },
 {
 "id": "3",
 "description": {
 "en-US": "Duck"
 }
 },
 {
 "id": "4",
 "description": {
 "en-US": "Van Delay Industries"
 }

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 77

 }
]
}

Performance

"definition": {
 "description": {
 "en-US": "This interaction measures performance over a day of RS sports:"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "performance",
 "correctResponsesPattern": [
 "pong[.]1:[,]dg[.]:10[,]lunch[.]"
],
 "steps": [
 {
 "id": "pong",
 "description": {
 "en-US": "Net pong matches won"
 }
 },
 {
 "id": "dg",
 "description": {
 "en-US": "Strokes over par in disc golf at Liberty"
 }
 },
 {
 "id": "lunch",
 "description": {
 "en-US": "Lunch having been eaten"
 }
 }
]
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 78

Sequencing

"definition": {
 "description": {
 "en-US": "Order players by their pong ladder position:"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "sequencing",
 "correctResponsesPattern": [
 "tim[,]mike[,]ells[,]ben"
],
 "choices": [
 {
 "id": "tim",
 "description": {
 "en-US": "Tim"
 }
 },
 {
 "id": "ben", "description": {
 "en-US": "Ben"
 }
 },
 {
 "id": "ells",
 "description": {
 "en-US": "Ells"
 }
 },
 {
 "id": "mike",
 "description": {
 "en-US": "Mike"
 }
 }
]
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 79

Numeric

"definition": {
 "description": {
 "en-US": "How many jokes is Chris the butt of each day?"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "numeric",
 "correctResponsesPattern": [
 "4:"
]
}

Other

"definition": {
 "description": {
 "en-US": "On this map, please mark Franklin, TN"
 },
 "type": "http://adlnet.gov/expapi/activities/cmi.interaction",
 "interactionType": "other",
 "correctResponsesPattern": [
 "(35.937432,-86.868896)"
]
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 80

Appendix F: Converting Statements to 1.0.0

Rationale This is a 1.0.0 specification, and as such implementers should not have to consider prior versions of
the specification. However, prior versions did see notable adoption. This data conversion is specified
in order to preserve the data tracked using earlier versions, and make it available to new
implementers in a consistent manner.

Details

Conversion of
Statements

created based on
version 0.9

A 1.0.0 system converting a Statement created in 0.9 MUST follow the steps below:

• If the Statement has been voided or uses Verbs, Activity types, or properties not included in the
0.9 specification, do not convert it.

• Prefix "verb" with "http://adlnet.gov/expapi/verbs/".
• Prefix any Activity ids which are not full absolute IRIs with

"tag:adlnet.gov,2013:expapi:0.9:activities:"
• Prefix any extension keys which are not full absolute IRIs with

"tag:adlnet.gov,2013:expapi:0.9:extensions:"
• Prefix Activity types with http://adlnet.gov/expapi/activities/
• for each Agent (Actor):

o Search for Inverse Functional Identifiers in this order: "mbox, mbox_sha1sum, openId,
account". Keep the first populated Inverse Functional Identifier found, discard the rest.

o For the above Inverse Functional Identifier, take the first element in the array and use that as
the value of that Inverse Functional Identifier property, discarding any remaining elements.

o If the "name" property is present, set it equal to the first element in the "name" array, discard
the remaining elements.

o Remove all remaining properties.
• Remove the "voided" property from the Statement, if present. Remember, if the value of the

voided property is true, then the Statement MUST NOT be converted.
• Add "version": "1.0.0"
• If an authority was not previously set, set the authority to an Agent identified by an account with a

homePage set to the home page corresponding to the system performing the conversion and an
accountName of "unknown".

• If the Statement field in context was set, remove it from the Statement.
• Preserve all other fields without modification, including "stored". Stored should still be updated if

the Statement is passed to another system.

Conversion of
Statements

created based on
version 0.95

A 1.0.0 system converting a Statement created in 0.95 MUST follow the steps below:

• If the Statement is voided, do not convert it.
• Remove the "voided" property from the Statement, if present. Remember, if the value of the

voided property is true, then the Statement MUST NOT be converted.
• Add "version": "1.0.0"
• If an authority was not previously set, set the authority to an Agent identified by an account with a

homePage set to the home page corresponding to the system performing the conversion and an
accountName of "unknown".

• If the Statement field in context was set to anything other than a StatementRef, remove it from the
Statement.

• Preserve all other fields without modification, including "stored". Stored should still be updated if
the Statement is passed to another system.

http://adlnet.gov/expapi/verbs/
http://adlnet.gov/expapi/activities/

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 81

Example A 0.9 statement:

{
 "id": "d1eec41f-1e93-4ed6-acbf-5c4bd0c24269",
 "actor": {
 "objectType": "Person",
 "name": [
 "Joe Schmoe",
 "Joseph Schmoseph"
],
 "mbox": [
 "mailto:joe@example.com"
],
 "openid": [
 "http://openid.com/joe-schmoe"
]
 },
 "verb": "completed",
 "inProgress": false,
 "object": {
 "objectType": "Activity",
 "id": "http://www.example.com/activities/001",
 "definition": {
 "name": {
 "en-US": "Example Activity"
 },
 "type": "course"
 }
 },
 "result": {
 "completion": true
 },
 "context": {
 "instructor": {
 "objectType": "Person",
 "lastName": [
 "Dad"
],
 "firstName": [
 "Joe's"
],
 "mbox": [
 "mailto:joesdad@example.com"
]
 },
 "contextActivities": {
 "parent": {
 "objectType": "Activity",
 "id": "non-absolute-activity-id",
 "definition": {
 "name": {
 "en-US": "Another Activity"
 }
 }
 }
 }
 },
 "timestamp": "2012-06-01T19:09:13.245Z",
 "stored": "2012-06-29T15:41:39.165Z"
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 82

 Converted to 1.0.0:

{
 "version": "1.0.0",
 "id": "d1eec41f-1e93-4ed6-acbf-5c4bd0c24269",
 "actor": {
 "objectType": "Agent",
 "name": "Joe Schmoe",
 "mbox": "mailto:joe@example.com"
 },
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/completed",
 "display": {
 "en-US": "completed"
 }
 },
 "object": {
 "objectType": "Activity",
 "id": "http://www.example.com/activities/001",
 "definition": {
 "name": {
 "en-US": "Example Activity"
 },
 "type": "http://adlnet.gov/expapi/activities/course"
 }
 },
 "result": {
 "completion": true
 },
 "context": {
 "instructor": {
 "objectType": "Agent",
 "mbox": "mailto:joesdad@example.com"
 },
 "contextActivities": {
 "parent": [
 {
 "objectType": "Activity",
 "id": "tag:adlnet.gov,2013:expapi:0.9:activities:non-absolute-
activity-id",
 "definition": {
 "name": {
 "en-US": "Another Activity"
 }
 }
 }
]
 }
 },
 "timestamp": "2012-06-01T19:09:13.245Z",
 "stored": "2012-06-29T15:41:39.165Z",
 "authority": {
 "objectType": "Agent",
 "account": {
 "homePage": "http://www.example.com",
 "name": "unknown"
 }
 }
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 83

Appendix G: Example Signed Statement

 An example Signed Statement, as described in: 4.4 Signed Statements.

The original Statement serialization to be signed. New lines in this example are included via CR+LF
(0x0D + 0x0A).

{
 "version": "1.0.0",
 "id": "33cff416-e331-4c9d-969e-5373a1756120",
 "actor": {
 "mbox": "mailto:example@example.com",
 "name": "Example Learner",
 "objectType": "Agent"
 },
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/experienced",
 "display": {
 "en-US": "experienced"
 }
 },
 "object": {
 "id": "https://www.youtube.com/watch?v=xh4kIiH3Sm8",
 "objectType": "Activity",
 "definition": {
 "name": {
 "en-US": "Tax Tips & Information : How to File a Tax Return "
 },
 "description": {
 "en-US": "Filing a tax return will require filling out either a
1040, 1040A or 1040EZ form"
 }
 }
 },
 "timestamp": "2013-04-01T12:00:00Z"
}

Example private

key for X.509

certificate that

will be used for

signing

-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQDjxvZXF30WL4oKjZYXgR0ZyaX+u3y6+JqTqiNkFa/VTnet6Ly2
OT6ZmmcJEPnq3UnewpHoOQ+GfhhTkW13j06j5iNn4obcCVWTL9yXNvJH+Ko+xu4Y
l/ySPRrIPyTjtHdG0M2XzIlmmLqm+CAS+KCbJeH4tf543kIWC5pC5p3cVQIDAQAB
AoGAOejdvGq2XKuddu1kWXl0Aphn4YmdPpPyCNTaxplU6PBYMRjY0aNgLQE6bO2p
/HJiU4Y4PkgzkEgCu0xf/mOq5DnSkX32ICoQS6jChABAe20ErPfm5t8h9YKsTfn9
40lAouuwD9ePRteizd4YvHtiMMwmh5PtUoCbqLefawNApAECQQD1mdBW3zL0okUx
2pc4tttn2qArCG4CsEZMLlGRDd3FwPWJz3ZPNEEgZWXGSpA9F1QTZ6JYXIfejjRo
UuvRMWeBAkEA7WvzDBNcv4N+xeUKvH8ILti/BM58LraTtqJlzjQSovek0srxtmDg
5of+xrxN6IM4p7yvQa+7YOUOukrVXjG+1QJBAI2mBrjzxgm9xTa5odn97JD7UMFA
/WHjlMe/Nx/35V52qaav1sZbluw+TvKMcqApYj5G2SUpSNudHLDGkmd2nQECQFfc
lBRK8g7ZncekbGW3aRLVGVOxClnLLTzwOlamBKOUm8V6XxsMHQ6TE2D+fKJoNUY1
2HGpk+FWwy2D1hRGuoUCQAXfaLSxtaWdPtlZTPVueF7ZikQDsVg+vtTFgpuHloR2
6EVc1RbHHZm32yvGDY8IkcoMfJQqLONDdLfS/05yoNU=
-----END RSA PRIVATE KEY-----

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 84

Example public

X.509 certificate

-----BEGIN CERTIFICATE-----
MIIDATCCAmqgAwIBAgIJAMB1csNuA6+kMA0GCSqGSIb3DQEBBQUAMHExCzAJBgNV
BAYTAlVTMRIwEAYDVQQIEwlUZW5uZXNzZWUxGDAWBgNVBAoTD0V4YW1wbGUgQ29t
cGFueTEQMA4GA1UEAxMHRXhhbXBsZTEiMCAGCSqGSIb3DQEJARYTZXhhbXBsZUBl
eGFtcGxlLmNvbTAeFw0xMzA0MDQxNTI4MzBaFw0xNDA0MDQxNTI4MzBaMIGWMQsw
CQYDVQQGEwJVUzESMBAGA1UECBMJVGVubmVzc2VlMREwDwYDVQQHEwhGcmFua2xp
bjEYMBYGA1UEChMPRXhhbXBsZSBDb21wYW55MRAwDgYDVQQLEwdFeGFtcGxlMRAw
DgYDVQQDEwdFeGFtcGxlMSIwIAYJKoZIhvcNAQkBFhNleGFtcGxlQGV4YW1wbGUu
Y29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjxvZXF30WL4oKjZYXgR0Z
yaX+u3y6+JqTqiNkFa/VTnet6Ly2OT6ZmmcJEPnq3UnewpHoOQ+GfhhTkW13j06j
5iNn4obcCVWTL9yXNvJH+Ko+xu4Yl/ySPRrIPyTjtHdG0M2XzIlmmLqm+CAS+KCb
JeH4tf543kIWC5pC5p3cVQIDAQABo3sweTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIB
DQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUVs3v
5afEdOeoYeVajAQE4v0WS1QwHwYDVR0jBBgwFoAUyVIc3yvra4EBz20I4BF39IAi
xBkwDQYJKoZIhvcNAQEFBQADgYEAgS/FF5D0Hnj44rvT6kgn3kJAvv2lj/fyjztK
IrYS33ljXGn6gGyA4qtbXA23PrO4uc/wYCSDICDpPobh62xTCd9qObKhgwWOi05P
SBLqUu3mwfAe15LJBJBqPVZ4K0kppePBU8m6aIZoH57L/9t4OoaL8yKs/qjKFeI1
OFWZxvA=
-----END CERTIFICATE-----

Example

certificate

authority

certificate

-----BEGIN CERTIFICATE-----
MIIDNzCCAqCgAwIBAgIJAMB1csNuA6+jMA0GCSqGSIb3DQEBBQUAMHExCzAJBgNV
BAYTAlVTMRIwEAYDVQQIEwlUZW5uZXNzZWUxGDAWBgNVBAoTD0V4YW1wbGUgQ29t
cGFueTEQMA4GA1UEAxMHRXhhbXBsZTEiMCAGCSqGSIb3DQEJARYTZXhhbXBsZUBl
eGFtcGxlLmNvbTAeFw0xMzA0MDQxNTI1NTNaFw0yMzA0MDIxNTI1NTNaMHExCzAJ
BgNVBAYTAlVTMRIwEAYDVQQIEwlUZW5uZXNzZWUxGDAWBgNVBAoTD0V4YW1wbGUg
Q29tcGFueTEQMA4GA1UEAxMHRXhhbXBsZTEiMCAGCSqGSIb3DQEJARYTZXhhbXBs
ZUBleGFtcGxlLmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA1sBnBWPZ
0f7WJUFTJy5+01SlS5Z6DDD6Uye9vK9AycgV5B3+WC8HC5u5h91MujAC1ARPVUOt
svPRs45qKNFIgIGRXKPAwZjawEI2sCJRSKV47i6B8bDv4WkuGvQaveZGI0qlmN5R
1Eim2gUItRj1hgcC9rQavjlnFKDY2rlXGukCAwEAAaOB1jCB0zAdBgNVHQ4EFgQU
yVIc3yvra4EBz20I4BF39IAixBkwgaMGA1UdIwSBmzCBmIAUyVIc3yvra4EBz20I
4BF39IAixBmhdaRzMHExCzAJBgNVBAYTAlVTMRIwEAYDVQQIEwlUZW5uZXNzZWUx
GDAWBgNVBAoTD0V4YW1wbGUgQ29tcGFueTEQMA4GA1UEAxMHRXhhbXBsZTEiMCAG
CSqGSIb3DQEJARYTZXhhbXBsZUBleGFtcGxlLmNvbYIJAMB1csNuA6+jMAwGA1Ud
EwQFMAMBAf8wDQYJKoZIhvcNAQEFBQADgYEADhwTebGk735yKhm8DqCxvNnEZ0Nx
sYEYOjgRG1yXTlW5pE691fSH5AZ+T6fpwpZcWY5QYkoN6DnwjOxGkSfQC3/yGmcU
DKBPwiZ5O2s9C+fE1kUEnrX2Xea4agVngMzR8DQ6oOauLWqehDB+g2ENWRLoVgS+
ma5/Ycs0GTyrECY=
-----END CERTIFICATE-----

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 85

JWS Header Note that along with specifying the algorithm, the certificate chain for the signing certificate has been
included.

{
 "alg": "RS256",
 "x5c": [

"MIIDATCCAmqgAwIBAgIJAMB1csNuA6+kMA0GCSqGSIb3DQEBBQUAMHExCzAJBgNVBAYTAlVTMRIwEAYDV
QQIEwlUZW5uZXNzZWUxGDAWBgNVBAoTD0V4YW1wbGUgQ29tcGFueTEQMA4GA1UEAxMHRXhhbXBsZTEiMCA
GCSqGSIb3DQEJARYTZXhhbXBsZUBleGFtcGxlLmNvbTAeFw0xMzA0MDQxNTI4MzBaFw0xNDA0MDQxNTI4M
zBaMIGWMQswCQYDVQQGEwJVUzESMBAGA1UECBMJVGVubmVzc2VlMREwDwYDVQQHEwhGcmFua2xpbjEYMBY
GA1UEChMPRXhhbXBsZSBDb21wYW55MRAwDgYDVQQLEwdFeGFtcGxlMRAwDgYDVQQDEwdFeGFtcGxlMSIwI
AYJKoZIhvcNAQkBFhNleGFtcGxlQGV4YW1wbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQD
jxvZXF30WL4oKjZYXgR0ZyaX+u3y6+JqTqiNkFa/VTnet6Ly2OT6ZmmcJEPnq3UnewpHoOQ+GfhhTkW13j
06j5iNn4obcCVWTL9yXNvJH+Ko+xu4Yl/ySPRrIPyTjtHdG0M2XzIlmmLqm+CAS+KCbJeH4tf543kIWC5p
C5p3cVQIDAQABo3sweTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIBDQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBDZ
XJ0aWZpY2F0ZTAdBgNVHQ4EFgQUVs3v5afEdOeoYeVajAQE4v0WS1QwHwYDVR0jBBgwFoAUyVIc3yvra4E
Bz20I4BF39IAixBkwDQYJKoZIhvcNAQEFBQADgYEAgS/FF5D0Hnj44rvT6kgn3kJAvv2lj/fyjztKIrYS3
3ljXGn6gGyA4qtbXA23PrO4uc/wYCSDICDpPobh62xTCd9qObKhgwWOi05PSBLqUu3mwfAe15LJBJBqPVZ
4K0kppePBU8m6aIZoH57L/9t4OoaL8yKs/qjKFeI1OFWZxvA=",

"MIIDNzCCAqCgAwIBAgIJAMB1csNuA6+jMA0GCSqGSIb3DQEBBQUAMHExCzAJBgNVBAYTAlVTMRIwEAYDV
QQIEwlUZW5uZXNzZWUxGDAWBgNVBAoTD0V4YW1wbGUgQ29tcGFueTEQMA4GA1UEAxMHRXhhbXBsZTEiMCA
GCSqGSIb3DQEJARYTZXhhbXBsZUBleGFtcGxlLmNvbTAeFw0xMzA0MDQxNTI1NTNaFw0yMzA0MDIxNTI1N
TNaMHExCzAJBgNVBAYTAlVTMRIwEAYDVQQIEwlUZW5uZXNzZWUxGDAWBgNVBAoTD0V4YW1wbGUgQ29tcGF
ueTEQMA4GA1UEAxMHRXhhbXBsZTEiMCAGCSqGSIb3DQEJARYTZXhhbXBsZUBleGFtcGxlLmNvbTCBnzANB
gkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA1sBnBWPZ0f7WJUFTJy5+01SlS5Z6DDD6Uye9vK9AycgV5B3+WC8
HC5u5h91MujAC1ARPVUOtsvPRs45qKNFIgIGRXKPAwZjawEI2sCJRSKV47i6B8bDv4WkuGvQaveZGI0qlm
N5R1Eim2gUItRj1hgcC9rQavjlnFKDY2rlXGukCAwEAAaOB1jCB0zAdBgNVHQ4EFgQUyVIc3yvra4EBz20
I4BF39IAixBkwgaMGA1UdIwSBmzCBmIAUyVIc3yvra4EBz20I4BF39IAixBmhdaRzMHExCzAJBgNVBAYTA
lVTMRIwEAYDVQQIEwlUZW5uZXNzZWUxGDAWBgNVBAoTD0V4YW1wbGUgQ29tcGFueTEQMA4GA1UEAxMHRXh
hbXBsZTEiMCAGCSqGSIb3DQEJARYTZXhhbXBsZUBleGFtcGxlLmNvbYIJAMB1csNuA6+jMAwGA1UdEwQFM
AMBAf8wDQYJKoZIhvcNAQEFBQADgYEADhwTebGk735yKhm8DqCxvNnEZ0NxsYEYOjgRG1yXTlW5pE691fS
H5AZ+T6fpwpZcWY5QYkoN6DnwjOxGkSfQC3/yGmcUDKBPwiZ5O2s9C+fE1kUEnrX2Xea4agVngMzR8DQ6o
OauLWqehDB+g2ENWRLoVgS+ma5/Ycs0GTyrECY="
]
}

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 86

JWS signature

ew0KICAgICJhbGciOiAiUlMyNTYiLA0KICAgICJ4NWMiOiBbDQogICAgICAgICJNSUlEQVRDQ0FtcWdBd0
lCQWdJSkFNQjFjc051QTYra01BMEdDU3FHU0liM0RRRUJCUVVBTUhFeEN6QUpCZ05WQkFZVEFsVlRNUkl3
RUFZRFZRUUlFd2xVWlc1dVpYTnpaV1V4R0RBV0JnTlZCQW9URDBWNFlXMXdiR1VnUTI5dGNHRnVlVEVRTU
E0R0ExVUVBeE1IUlhoaGJYQnNaVEVpTUNBR0NTcUdTSWIzRFFFSkFSWVRaWGhoYlhCc1pVQmxlR0Z0Y0d4
bExtTnZiVEFlRncweE16QTBNRFF4TlRJNE16QmFGdzB4TkRBME1EUXhOVEk0TXpCYU1JR1dNUXN3Q1FZRF
ZRUUdFd0pWVXpFU01CQUdBMVVFQ0JNSlZHVnVibVZ6YzJWbE1SRXdEd1lEVlFRSEV3aEdjbUZ1YTJ4cGJq
RVlNQllHQTFVRUNoTVBSWGhoYlhCc1pTQkRiMjF3WVc1NU1SQXdEZ1lEVlFRTEV3ZEZlR0Z0Y0d4bE1SQX
dEZ1lEVlFRREV3ZEZlR0Z0Y0d4bE1TSXdJQVlKS29aSWh2Y05BUWtCRmhObGVHRnRjR3hsUUdWNFlXMXdi
R1V1WTI5dE1JR2ZNQTBHQ1NxR1NJYjNEUUVCQVFVQUE0R05BRENCaVFLQmdRRGp4dlpYRjMwV0w0b0tqWl
lYZ1IwWnlhWCt1M3k2K0pxVHFpTmtGYS9WVG5ldDZMeTJPVDZabW1jSkVQbnEzVW5ld3BIb09RK0dmaGhU
a1cxM2owNmo1aU5uNG9iY0NWV1RMOXlYTnZKSCtLbyt4dTRZbC95U1BScklQeVRqdEhkRzBNMlh6SWxtbU
xxbStDQVMrS0NiSmVINHRmNTQza0lXQzVwQzVwM2NWUUlEQVFBQm8zc3dlVEFKQmdOVkhSTUVBakFBTUN3
R0NXQ0dTQUdHK0VJQkRRUWZGaDFQY0dWdVUxTk1JRWRsYm1WeVlYUmxaQ0JEWlhKMGFXWnBZMkYwWlRBZE
JnTlZIUTRFRmdRVVZzM3Y1YWZFZE9lb1llVmFqQVFFNHYwV1MxUXdId1lEVlIwakJCZ3dGb0FVeVZJYzN5
dnJhNEVCejIwSTRCRjM5SUFpeEJrd0RRWUpLb1pJaHZjTkFRRUZCUUFEZ1lFQWdTL0ZGNUQwSG5qNDRydl
Q2a2duM2tKQXZ2MmxqL2Z5anp0S0lyWVMzM2xqWEduNmdHeUE0cXRiWEEyM1ByTzR1Yy93WUNTRElDRHBQ
b2JoNjJ4VENkOXFPYktoZ3dXT2kwNVBTQkxxVXUzbXdmQWUxNUxKQkpCcVBWWjRLMGtwcGVQQlU4bTZhSV
pvSDU3TC85dDRPb2FMOHlLcy9xaktGZUkxT0ZXWnh2QT0iLA0KICAgICAgICAiTUlJRE56Q0NBcUNnQXdJ
QkFnSUpBTUIxY3NOdUE2K2pNQTBHQ1NxR1NJYjNEUUVCQlFVQU1IRXhDekFKQmdOVkJBWVRBbFZUTVJJd0
VBWURWUVFJRXdsVVpXNXVaWE56WldVeEdEQVdCZ05WQkFvVEQwVjRZVzF3YkdVZ1EyOXRjR0Z1ZVRFUU1B
NEdBMVVFQXhNSFJYaGhiWEJzWlRFaU1DQUdDU3FHU0liM0RRRUpBUllUWlhoaGJYQnNaVUJsZUdGdGNHeG
xMbU52YlRBZUZ3MHhNekEwTURReE5USTFOVE5hRncweU16QTBNREl4TlRJMU5UTmFNSEV4Q3pBSkJnTlZC
QVlUQWxWVE1SSXdFQVlEVlFRSUV3bFVaVzV1WlhOelpXVXhHREFXQmdOVkJBb1REMFY0WVcxd2JHVWdRMj
l0Y0dGdWVURVFNQTRHQTFVRUF4TUhSWGhoYlhCc1pURWlNQ0FHQ1NxR1NJYjNEUUVKQVJZVFpYaGhiWEJz
WlVCbGVHRnRjR3hsTG1OdmJUQ0JuekFOQmdrcWhraUc5dzBCQVFFRkFBT0JqUUF3Z1lrQ2dZRUExc0JuQl
dQWjBmN1dKVUZUSnk1KzAxU2xTNVo2RERENlV5ZTl2SzlBeWNnVjVCMytXQzhIQzV1NWg5MU11akFDMUFS
UFZVT3RzdlBSczQ1cUtORklnSUdSWEtQQXdaamF3RUkyc0NKUlNLVjQ3aTZCOGJEdjRXa3VHdlFhdmVaR0
kwcWxtTjVSMUVpbTJnVUl0UmoxaGdjQzlyUWF2amxuRktEWTJybFhHdWtDQXdFQUFhT0IxakNCMHpBZEJn
TlZIUTRFRmdRVXlWSWMzeXZyYTRFQnoyMEk0QkYzOUlBaXhCa3dnYU1HQTFVZEl3U0JtekNCbUlBVXlWSW
MzeXZyYTRFQnoyMEk0QkYzOUlBaXhCbWhkYVJ6TUhFeEN6QUpCZ05WQkFZVEFsVlRNUkl3RUFZRFZRUUlF
d2xVWlc1dVpYTnpaV1V4R0RBV0JnTlZCQW9URDBWNFlXMXdiR1VnUTI5dGNHRnVlVEVRTUE0R0ExVUVBeE
1IUlhoaGJYQnNaVEVpTUNBR0NTcUdTSWIzRFFFSkFSWVRaWGhoYlhCc1pVQmxlR0Z0Y0d4bExtTnZiWUlK
QU1CMWNzTnVBNitqTUF3R0ExVWRFd1FGTUFNQkFmOHdEUVlKS29aSWh2Y05BUUVGQlFBRGdZRUFEaHdUZW
JHazczNXlLaG04RHFDeHZObkVaME54c1lFWU9qZ1JHMXlYVGxXNXBFNjkxZlNINUFaK1Q2ZnB3cFpjV1k1
UVlrb042RG53ak94R2tTZlFDMy95R21jVURLQlB3aVo1TzJzOUMrZkUxa1VFbnJYMlhlYTRhZ1ZuZ016Uj
hEUTZvT2F1TFdxZWhEQitnMkVOV1JMb1ZnUyttYTUvWWNzMEdUeXJFQ1k9Ig0KICAgIF0NCn0.ew0KICAg
ICJ2ZXJzaW9uIjogIjEuMC4wIiwNCiAgICAiaWQiOiAiMzNjZmY0MTYtZTMzMS00YzlkLTk2OWUtNTM3M2
ExNzU2MTIwIiwNCiAgICAiYWN0b3IiOiB7DQogICAgICAgICJtYm94IjogIm1haWx0bzpleGFtcGxlQGV4
YW1wbGUuY29tIiwNCiAgICAgICAgIm5hbWUiOiAiRXhhbXBsZSBMZWFybmVyIiwNCiAgICAgICAgIm9iam
VjdFR5cGUiOiAiQWdlbnQiDQogICAgfSwNCiAgICAidmVyYiI6IHsNCiAgICAgICAgImlkIjogImh0dHA6
Ly9hZGxuZXQuZ292L2V4cGFwaS92ZXJicy9leHBlcmllbmNlZCIsDQogICAgICAgICJkaXNwbGF5Ijogew
0KICAgICAgICAgICAgImVuLVVTIjogImV4cGVyaWVuY2VkIg0KICAgICAgICB9DQogICAgfSwNCiAgICAi
b2JqZWN0Ijogew0KICAgICAgICAiaWQiOiAiaHR0cHM6Ly93d3cueW91dHViZS5jb20vd2F0Y2g_dj14aD
RrSWlIM1NtOCIsDQogICAgICAgICJvYmplY3RUeXBlIjogIkFjdGl2aXR5IiwNCiAgICAgICAgImRlZmlu
aXRpb24iOiB7DQogICAgICAgICAgICAibmFtZSI6IHsNCiAgICAgICAgICAgICAgICAiZW4tVVMiOiAiVG
F4IFRpcHMgJiBJbmZvcm1hdGlvbiA6IEhvdyB0byBGaWxlIGEgVGF4IFJldHVybiAiDQogICAgICAgICAg
ICB9LA0KICAgICAgICAgICAgImRlc2NyaXB0aW9uIjogew0KICAgICAgICAgICAgICAgICJlbi1VUyI6IC
JGaWxpbmcgYSB0YXggcmV0dXJuIHdpbGwgcmVxdWlyZSBmaWxsaW5nIG91dCBlaXRoZXIgYSAxMDQwLCAx
MDQwQSBvciAxMDQwRVogZm9ybSINCiAgICAgICAgICAgIH0NCiAgICAgICAgfQ0KICAgIH0sDQogICAgIn
RpbWVzdGFtcCI6ICIyMDEzLTA0LTAxVDEyOjAwOjAwWiINCn0.FWuwaPhwUbkk7h9sKW5zSvjsYNugvxJ-
TrVaEgt_DCUT0bmKhQScRrjMB6P9O50uznPwT66oF1NnU_G0HVhRzS5voiXE-y7tT3z0M3-
8A6YK009Bk_digVUul-HA4Fpd5IjoBBGe3yzaQ2ZvzarvRuipvNEQCI0onpfuZZJQ0d8

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 87

Signed Statement

{
 "version": "1.0.0",
 "id": "33cff416-e331-4c9d-969e-5373a1756120",
 "actor": {
 "mbox": "mailto:example@example.com",
 "name": "Example Learner",
 "objectType": "Agent"
 },
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/experienced",
 "display": {
 "en-US": "experienced"
 }
 },
 "object": {
 "id": "https://www.youtube.com/watch?v=xh4kIiH3Sm8",
 "objectType": "Activity",
 "definition": {
 "name": {
 "en-US": "Tax Tips & Information : How to File a Tax Return "
 },
 "description": {
 "en-US": "Filing a tax return will require filling out either a
1040, 1040A or 1040EZ form"
 }
 }
 },
 "timestamp": "2013-04-01T12:00:00Z",
 "attachments": [
 {
 "usageType": "http://adlnet.gov/expapi/attachments/signature",
 "display": { "en-US": "Signature" },
 "description": { "en-US": "A test signature" },
 "contentType": "application/octet-stream",
 "length": 4235,
 "sha2":
"dc9589e454ff375dd5dfd6f556d2583e231e8cafe55ef40102ddd988b79f86f0"
 }
]
}

Note Attached signature not shown, see attachments for attachment message format.

 v1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 88

Appendix H: Table of All Endpoints

Endpoint
(Base IRI of the LRS Precedes Each Endpoint)

Function

statements Statement Storage/Retrieval

agents Agent Object Storage/Retrieval

agents/profile Agent Profile API

activities Activity Object Storage/Retrieval

activities/profile Activity Profile API

activities/state State API

about LRS Information

OAuth/initiate Temporary Credential Request

OAuth/authorize Resource Owner Authorization

OAuth/token Token Request

	experience-api
	actor
	agent
	group
	inversefunctional
	agentaccount
	verb
	verb_lists_and_repositories
	object
	interactionacts
	interactiontype
	stmtasobj
	stmtref
	substmt
	result
	score
	context
	timestamp
	stored
	authority
	version
	attachments
	attachmentUsage
	signature
	miscdocument
	misclangmap
	miscext
	apiversioning
	concurrency
	oauthscope
	retstmts
	stmtapi
	voidedstatements
	appendix_A
	appendix_B
	appendix_C
	appendix_D
	appendix_E
	appendix_F
	appendix_G

